Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 9, 2015

Linear Polyethers as Additives for AOT-Based Microemulsions: Prediction of Percolation Temperature Changes Using Artificial Neural Networks

Linare Polyether als Additive in AOT-basierenden Mikroemulsionen: Vorhersage von Veränderungen der Percolationstemperatur mittels eines künstlichen neuronalen Netzwerks
Óscar Adrían Moldes , Antonio Cid , I. A. Montoya and Juan Carlos Mejuto

Abstract

Predictive models based on artificial neural networks have been developed for the percolation threshold of AOT based microemulsions with addition of either glymes or polyethylene glycols. Models have been built according to the multilayer perceptron architecture, with five input variables (concentration, molecular mass, log P, number of C and O of the additive). Best model for glymes has a topology of five input neurons, five neurons in a single hidden layer and one output neuron. Polyethylene glycol model's architecture consists in five input neurons, three hidden layers with eight neurons in both first two and five in the last, and a neuron in the last output layer. All of them have a good predictive power according to several quality parameters.

Kurzfassung

Es wurden auf künstliche neuronale Netzwerke basierende Vorhersagemodelle für die Percolationsschwelle von AOT-basierenden Mikroemulsionen, denen entweder Glyme oder Polyethylenglykole zugesetzt wurden, entwickelt. Die Modelle wurden entsprechend der Multi-Layer-Perception-Architektur mit 5 Eingangsvariablen (Konzentration, Molmasse, log P, Anzahl der C- und der O-Atome des Additivs) gebaut. Das beste Modell für die Gylme hat eine Topologie von 5 Eingangsneuronen, 5 Neutronen in der einzelnen Hidden-Layer und ein Ausgangsneutron. Die Architektur des Polyethylenglykolmodells besteht aus 5 Eingangsneuronen, 3 Hiddenlayer mit 8 Neutronen in den ersten beiden und 5 in der letzten Layer und einem Neuron in der letzten Ausgangslayer. Alle lieferten eine gute Vorhersage entsprechend der verschiedenen Qualitätsparameter.


*Correspondence address, Prof. Dr. Juan C. Mejuto, Department of Physical Chemistry, Faculty of Science, University of Vigo at Ourense, Ourense, Galicia, Spain, E-Mail:

Juan Carlos Mejuto actually is Full Professor in the Physical Chemistry Department of University of Vigo at Ourense Campus. He is the head of the Colloids group at Ourense Campus. His research interest comprises (i) physical organic and physical inorganic chemistry, (ii) reactivity mechanisms in homogeneous and microheterogeneous media, (iii) stability of self-assembly aggregates and (iv) supramolecular chemistry.

Óscar Adrían Moldes take his PhD at Colloid Chemistry Group at the Faculty of Sciences at Ourense (University of Vigo). His research interests are focused in the internal dynamics of self-assembly colloids, in particular percolative phenomena in microemulsions, and the synthesis and properties of colloidal nanomaterials.

Antonio Cid take his PhD at University of Vigo, actually he has got a Post-Doctoral Position at New University of Lisbon. His research interests are focused in properties of self-assembly colloid aggregates at nanoscale and its applications in biotechnology.

Iago Antonio Montoya is a PhD student at Colloid Chemistry Group at the Faculty of Sciences at Ourense (University of Vigo).


References

1. Pileni, M. P. (Eds.): Structure and Reactivity in reverse micelles, Elsevier, Amsterdam, 1989. ISBN 0-4448-8166-2.Search in Google Scholar

2. Zulauf, M. and Eicke, H. F.: J. Phys. Chem.83 (4) (1979) 480–486. 10.1021/j100467a011Search in Google Scholar

3. De, T. K. and Maitra, A.: Adv. Colloid Interface Sci.59 (1995) 95193. 10.1016/0001-8686(95)80005-NSearch in Google Scholar

4. García-Río, L., Hervés, P., Mejuto, J. C., Pérez-Juste, J. and Rodríguez-Dafonte, P.: New J. Chem.27 (2003) 372380. 10.1039/B209539DSearch in Google Scholar

5. Meinhardt, S., Vink, R. L. C. and Schmid, F.: Proceedings of the National Academy of Sciences of the United States of America110 (12) (2013) 4476–4481. 10.1073/pnas.1221075110Search in Google Scholar PubMed PubMed Central

6. Patra, A., Luong, T. Q., MitraR.K. and Havenith, M.: The influence of charge on the structure and dynamics of water encapsulated in reverse micelles, Phys. Chem. Chem. Phys.16 (2014) 1287512883. 10.1039/C4CP00386ASearch in Google Scholar PubMed

7. García-Río, L., Mejuto, J. C. and Pérez-Lorenzo, M.: New J. Chem.28 (8) (2004) 988–995. 10.1039/b401226gSearch in Google Scholar

8. García-Río, L., Leis, J. R. and Mejuto, J. C.: J. Phys. Chem.100 (26) (1996) 10981–10988. 10.1021/jp953264uSearch in Google Scholar

9. Ruasse, M.-F., Blagoeva, I. B., Ciri, R., García-Río, L., Leis, J. R., Marques, A., Mejuto, J. and Monnier, E.: Pure Appl. Chem.69 (9) (1997) 1923–1932. 10.1351/pac199769091923Search in Google Scholar

10. García-Río, L., Mejuto, J. C., Ciri, R., Blagoeva, I. B., Leis, J. R. and Ruasse, M. F.: J. Phys. Chem. B103 (24) (1999) 4997–5004. 10.1021/jp982789uSearch in Google Scholar

11. García-Río, L., Hervés, P., Mejuto, J. C., Pérez-Juste, J. and Rodríguez-Dafonte, P.: Langmuir16 (25) (2000) 9716–9021. 10.1021/la000523kSearch in Google Scholar

12. García-Río, L., Hervés, P., Mejuto, J. C., Pérez-Juste, J. and Rodríguez-Dafonte, P.: Ind. Eng. Chem. Res. 42 (22) (2003) 5450–5456. 10.1021/ie0208523Search in Google Scholar

13. Gayet, F., El Kalamouni, C., Lavedan, P., Marty, J.-D., Brûlet, A. and Lauth-de Viguerie, N.: Langmuir25 (17) (2009) 9741–9750. 10.1021/la901175eSearch in Google Scholar PubMed

14. Tanaka, M., Monjushiro, H. and Watarai, H.: Langmuir20 (25) (2004) 10791–10797. 10.1021/la0485780Search in Google Scholar PubMed

15. Moyano, F., Falcone, R. D., Mejuto, J. C., Silver, J. J. and Correa, N. M.: Chem. Eur. J.16 (2010) 16. 10.1002/chem.200903410Search in Google Scholar PubMed

16. Sun, Y., Yan, K. and Huang, X.: Colloids and Surfaces B: Biointerfaces122 (2014) 6671. 10.1016/j.colsurfb.2014.06.040Search in Google Scholar PubMed

17. Nourafkan, E. and Alamdari, A.: Journal of Industrial and Engineering Chemistry20 (5) (2014) 3639–3645. 10.1016/j.jiec.2013.12.059Search in Google Scholar

18. Negro, E., Latsuzbaia, R. and Koper, G. J. M.: Langmuir30 (28) (2014) 8300–8307. 10.1021/la502055zSearch in Google Scholar PubMed

19. Mittal, K. L. (Eds.): Micellization, Solubilization and Microemulsions, Plenum Press, NY1991.Search in Google Scholar

20. Lukowicz, T., Maldonado, Company R., Molinier, V., Aubry, J.-M. and Nardello-Rataj, V.: Colloids and Surfaces A: Physicochemical and Engineering Aspects458 (1) (2014) 85–95. 10.1016/j.colsurfa.2013.11.024Search in Google Scholar

21. YingLiu, LanWang, YiqingZhao, ManHe, XinZhang, MengmengNiu and NianpingFeng: International Journal of Pharmaceutics476 (1) (2014) 169–177. 10.1016/j.ijpharm.2014.09.052Search in Google Scholar PubMed

22. LiliZhao, YiWang, YingjieZhai, ZiminWang, JiyongLiu and GuangxiZhai: Ropivacaine loaded microemulsion and microemulsion-based gel for transdermal delivery: Preparation, optimization, and evaluation. International Journal of Pharmaceutics477 (1–2) (2014) 47–56. 10.1016/j.ijpharm.2014.10.005Search in Google Scholar PubMed

23. Feldman, I., Kozlovich, N., Nir, I. and Garti, N.: J. Phys. Rev. E51 (1) (1995) 478–491. 10.1103/PhysRevE.51.478Search in Google Scholar PubMed

24. Eicke, H. F., Bercovec, M. and Das-Gupta, B.: J. Phys. Chem.93 (1) (1989) 314–317. 10.1021/j100338a062Search in Google Scholar

25. Caboi, F., Capuzzi, G., Baglioni, P. and Monduzzi, M.: J. Phys. Chem. B101 (49) (1997) 10205–10212. 10.1021/jp971274kSearch in Google Scholar

26. García-Río, L., Leis, J. R., Mejuto, J. C., Peña, M. E. and Iglesias, E.: Langmuir 10(6) (1994) 1676–1683, and references therein. 10.1021/la00018a013Search in Google Scholar

27. García-Río, L., Hervés. P., Mejuto, J. C., Pérez-JusteJ.Rodríguez-Dafonte, P.: J. Colloid Interf. Sci. 225 (2) (2000) 259–264. 10.1021/la00018a013Search in Google Scholar

28. Eicke, H. F., Bercovec, M. and Das-Gupta, B.: Conductivity of water-in-oil microemulsions: a quantitative charge fluctuation model, J. Phys. Chem.93 (1989) 314317. 10.1021/j100338a062Search in Google Scholar

29. Kirkpatrick, S.: Classical transport in disordered media: scaling and effective-medium theories, Physi. Rev. Lett.27 (1971) 17221725. 10.1103/PhysRevLett.27.1722Search in Google Scholar

30. Bernasconi, J. and Weismann, H. J.: Effective-medium theories for site-disordered resistance networks, Phys. Rev. B13 (1976) 11311139. 10.1103/PhysRevB.13.1131Search in Google Scholar

31. Granqvist, C. G. and Hunderi, O.: Conductivity of inhomogeneous materials: effective-medium theory with dipole-dipole interaction, Phys. Rev. B18 (1978) 15541561. 10.1103/PhysRevB.18.1554Search in Google Scholar

32. Paul, S., Bisal, S. and Moulik, S. P.: Physicochemical studies on microemulsions: test of the theories of percolation, J. Phy. Chem-US.96 (1992) 896901. 10.1021/j100181a067Search in Google Scholar

33. Hattori, Y., Ushiki, H., Engl, W., Courbin, L. and Panizza, P.: Electrical percolation in the presence of attractive interactions: an effective medium lattice approach applied to microemulsion systems. Physica A353 (2005) 2927. 10.1016/j.physa.2005.01.040Search in Google Scholar

34. Animesh KumarRakshit and Satya PriyaMoulik: Physicochemistry of W/O Microemulsions: Formation, Stability, and Droplet Clustering. In: Microemulsions: properties and applications. CRC Press. Editor Monzer Fanum. ISBN: ISBN 978-1-4200-8959-2.Search in Google Scholar

35. JeiraniZ., Jan, B. M., Ali, B. S., Noor, I. M., Hwa, S. C. and Sphanuchart, W.: Ind. Eng. Chem. Res.51 (2012) 1014710155. 10.1021/ie300107jSearch in Google Scholar

36. SarojRay, Satya R.Bisal and Satya P.Moulik: J. Chem. Soc., Faraday Trans.89 (1993) 32773282. 10.1039/FT9938903277Search in Google Scholar

37. Dasilva-Carbalhal, J., García-Río, L., Gómez-Díaz, D., Mejuto, J. C. and Pérez-Lorenzo, M.: Influence of glymes upon percolative phenomena in AOT-based microemulsions, Journal of Colloid and Interface Science292 (2005) 591594. 10.1016/j.jcis.2005.06.003Search in Google Scholar

38. Mehta, S. K. and Sharma, S.: Temperature-induced percolation behavior of AOT reverse micelles affected by poly(ethylene glycol)s, Journal of Colloid and Interface Science296 (2006) 690699. 10.1016/j.jcis.2005.09.035Search in Google Scholar

39. Arias-Barros, S. I., Cid, A., García-Río, L., Mejuto, J. C. and Morales, J.: Influence of polyethylene glycols on percolative phenomena in AOT microemulsions. Colloid Polym. Sci.288 (2010) 217221. 10.1007/s00396-009-2122-0Search in Google Scholar

40. Montoya, I. A., AstrayG., Cid, A., Manso, J. A., Moldes, O. A. and Mejuto, J. C.: Influence prediction of small organic molecules (ureas and thioureas) upon electrical percolation of AOT-based microemulsions using artificial neural networks, Tenside Surf. Det.49 (2012) 316320. 10.3139/113.110197Search in Google Scholar

41. Cid, A., Astray, G., Manso, J. A., Mejuto, J. C. and Moldes, O. A.: Artificial intelligence for electrical percolation of AOT-based microemulsions prediction. Tenside Surf. Det.48 (2011) 477483. 10.3139/113.110155Search in Google Scholar

42. Moldes, O. A., Astray, G., Cid, A., Iglesias-Otero, M. A., Morales, J. and Mejuto, J. C.: Percolation threshold of AOT microemulsions with n-alkyl acids as additives prediction by means of artificial neural networks, Tenside Surf. Det.50 (2013) 360368. 10.3139/113.110268Search in Google Scholar

43. Rassokhin, D. N., Lobanov, V. S. and Agraflotis, D. K.: Journal of Computational Chemistry22 (4) (2001) 373–386. 10.1002/1096-987X(200103)22:4<373::AID-JCC1009>3.0.CO;2-8Search in Google Scholar

44. De Víterbo, V. D., and Belchior, J. C.: J. Comput. Chem.22 (14) (2001) 1691–1701. 10.1002/jcc.1124Search in Google Scholar

45. Patra, J. C. and Singh, O.: J. Comput. Chem.30 (15) (2009) 2494–2508. 10.1002/jcc.21240Search in Google Scholar

46. PedramNemati, MohammadImani, FarhidFarahmandghavi, HamidMirzadeh, EhsanMarzban-Rad and Ali MotieNasrabadi: Journal of Pharmacy and Pharmacology66 (5) (2014) 624–638. 10.1111/jphp.12187Search in Google Scholar

47. Hornik, K., Stinchcombe, M. and White, H.: Neural Networks2 (5) (1989) 359–366. 10.1016/0893-6080(89)90020-8Search in Google Scholar

48. Hait, S. K., Moulik, S. P. and Palepu, R.: Langmuir18 (7) (2002) 2471–2476. 10.1021/la0110794Search in Google Scholar

49. Moldes, Ó. A., Cid, A., Astray, G. and Mejuto, J. C.: Tenside Surf. Det.51 (6) (2014) 533–540. 10.3139/113.110340.Search in Google Scholar

50. Van Bommel, A., MacIsaac, G., Livingstone, N. and Palepu, R..: Fluid Phase Equilibria237 (2005) 5967. 10.1016/j.fluid.2005.08.015Search in Google Scholar

Received: 2015-01-30
Accepted: 2015-02-24
Published Online: 2015-07-09
Published in Print: 2015-07-15

© 2015, Carl Hanser Publisher, Munich

Downloaded on 9.12.2022 from https://www.degruyter.com/document/doi/10.3139/113.110374/html
Scroll Up Arrow