Abstract
Pseudo-ternary phase diagrams of 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF6) /Tween 80 (polyoxyethylene sorbitan monooleate)/alcohol/toluene systems were constructed with different linear-chain alcohols. The phase diagrams demonstrate that an increase in the surfactant/alcohol weight ratio yields a larger microemulsion domain. The different chain lengths of the alcohols affected the extent of the microemulsion region. Alcohols having short-chain lengths were optimum cosurfactants in bmimPF6-based microemulsion. Moreover, the influence on the microstructure of the single-phase area as a function of the alcohol chain was investigated using electrical conductivity. Preliminary investigations suggested that the bmimPF6-in-toluene region of systems which contain ethanol was notably magnified, and increasing in alcohol chain length (n = 4 – 10) led to a shrinkage for alcohols with longer chain length.
Kurzfassung
Es wurden pseudo-ternäre Phasendiagramme von Systemen aus 1-Butyl-3-methyl-imidazoliumhexafluorophosphat (bmimPF6) /Tween 80 (Polyoxyethylensorbitanmonooleate)/Alkohol/Toluen erstellt. Es wurden lineare Alkohole mit unterschiedlichen Alkylkettenlängen verwendet. Die Phasendiagramme zeigen, dass der Anstieg des Tensid-Alkohol-Verhältnisses zu einem größeren Mikroemulsionsbereich führt. Die unterschiedlichen Kettenlängen der Alkohole beeinflussen die Größe der Mikroemulsionsregion und Alkohole mit kurzen Ketten waren optimale Co-Tenside in der Mikroemulsion auf bmimPF6-Basis. Außerdem wurde der Einfluss auf die Mikrostruktur des Einphasenbereiches als Funktion der Alkoholkette mittels der elektrischen Leitfähigkeit untersucht. Vorhergehende Untersuchungen deuten darauf hin, dass die bmimPF6-in-Toluen-Region der Systeme, die Ethanol enthalten, deutlich vergrößert war und dass ein Anstieg der Alkoholkettenlänge (n = 4 – 10) zu einer Verkleinerung bei Alkoholen mit längerer Kettenlänge führte.
References
1. Planeta, J. and Roth, M.: Partition coefficients of low-volatility solutes in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate–supercritical CO2 system from chromatographic retention measurements, J. Phys. Chem.B108 (2004) 11244–11249. 10.1021/jp049094fSearch in Google Scholar
2. Welton, T.: Room-temperature ionic liquids. Solvents for synthesis and catalysis, Chem. Rev.99 (1999) 2071–2084. 10.1021/cr980032tSearch in Google Scholar
3. Dupont, J., de Souza, R. F. and Suarez, P. A. Z.: Ionic liquid (molten salt) phase organometallic catalysis, Chem. Rev.102 (2002) 3667–3692. 10.1021/cr010338rSearch in Google Scholar
4. Liu, J., Jiang, G., Chi, Y., Cai, Y., Zhou, Q. and Hu, J.: Use of ionic liquids for liquid-phase microextraction of polycyclic aromatic hydrocarbons, Anal. Chem.75 (2003) 5870–5876. 10.1021/ac034506mSearch in Google Scholar
5. Zhao, D., Wu, M., Kou, Y. and Min, E.: Ionic liquids: Applications in catalysis, Catal. Today74 (2002) 157–189. 10.1016/S0920-5861(01)00541-7Search in Google Scholar
6. Eastoe, J., Gold, S., Rogers, S. E., Paul, A., Welton, T., Heenan, R. K. and Grillo, I.: Ionic liquid-in-oil microemulsions, J. Am. Chem. Soc.127 (2005) 7302–7303. 10.1021/ja051155fSearch in Google Scholar
7. Hao, J. and Zemb, T.: Self-assembled structures and chemical reactions in room-temperature ionic liquids, Curr. Opin. Colloid Interface Sci.12 (2007) 129–137. 10.1016/j.cocis.2006.11.004Search in Google Scholar
8. Gao, H., Li, J., Han, B., Chen, W., Zhang, J., Zhang, R. and Yan, D.: Microemulsions with ionic liquid polar domains, Phys. Chem. Chem. Phys.6 (2004) 2914–2916. 10.1039/B402977ASearch in Google Scholar
9. Li, J., Zhang, J., Gao, H., Han, B. and Gao, L.: Nonaqueous microemulsion-containing ionic liquid [Bmim][PF6] as polar microenvironment, Colloid Polym. Sci.283 (2005) 1371–1375. 10.1007/s00396-005-1330-5Search in Google Scholar
10. Cheng, S., Fu, X., Liu, J., Zhang, J., Zhang, Z., Wei, Y. and Han, B.: Study of ethylene glycol/TX-100/ionic liquid microemulsions, Colloids Surf.A302 (2007) 211–215. 10.1016/j.colsurfa.2007.02.024Search in Google Scholar
11. Gao, Y., Han, S., Han, B., Li, G., Shen, D., Li, Z., Du, J., Hou, W. and Zhang, G.: TX-100/water/1-butyl-3-methylimidazolium hexafluorophosphate micro-emulsions, Langmuir.21 (2005) 5681–5684. 10.1021/la0500880Search in Google Scholar
12. Gao, Y., Li, N., Zheng, L., Zhao, X., Zhang, S., Han, B., Hou, W. and Li, G.: A cyclic voltammetric technique for the detection of micro-regions of bmimPF6/Tween 20/H2O microemulsions and their performance characterization by UV-vis spectroscopy, Green Chem.8 (2006) 43–49. 10.1039/B510902GSearch in Google Scholar
13. Narang, A. S., Delmarre, D. and Gao, D.: Stable drug encapsulation in micelles and microemulsions, Int. J. Pharm.345 (2007) 9–25. 10.1016/j.ijpharm.2007.08.057Search in Google Scholar
14. Zhang, H., Feng, F., Li, J., Zhan, X., Wei, H., Li, H., Wang, H. and Zheng, X.: Formulation of food-grade microemulsions with glycerol monolaurate: Effects of short-chain alcohols, polyols, salts and nonionic surfactants, Eur. Food Res. Technol.226 (2008) 613–619. 10.1007/s00217-007-0606-zSearch in Google Scholar
15. Moniruzzaman, M., Tahara, Y., Tamura, M., Kamiya, N. and Goto, M.: Ionic liquid-assisted transdermal delivery of sparingly soluble drugs, Chem. Commun.46 (2010) 1452–1454. 10.1039/B907462GSearch in Google Scholar
16. Zheng, Y., Eli, W. and Li, G.: FTIR study of Tween80/1-butyl-3-methylimidazolium hexafluorophosphate/toluene microemulsions, Colloid Polym. Sci.287 (2009) 871–876. 10.1007/s00396-009-2044-xSearch in Google Scholar
17. Adhikari, A., Sahu, K., Dey, S., Ghosh, S., Mandal, U. and Bhattacharyya, K.: Femtosecond solvation dynamics in a neat ionic liquid and ionic liquid microemulsion: Excitation wavelength dependence, J. Phys. Chem.B111 (2007) 12809–12816. 10.1021/jp075693lSearch in Google Scholar
18. Adhikari, A., Das, D. K., Sasmal, D. K. and Bhattacharyya, K.: Ultrafast fret in a room temperature ionic liquid microemulsion: A femtosecond excitation wavelength dependence study. J. Phys. Chem. A113 (2009) 3737–3743. 10.1021/jp808777wSearch in Google Scholar
19. Gao, Y., Li, N., Hilfert, L., Zhang, S., Zheng, L. and Yu, L.: Temperature-induced microstructural changes in ionic liquid-based microemulsions, Langmuir.25 (2009) 1360–1365. 10.1021/la803452mSearch in Google Scholar
20. Gao, Y., Li, N., Zhang, S., Zheng, L., Li, X., Dong, B. and Yu, L.: Organic solvents induce the formation of oil-in-ionic liquid microemulsion aggregations, J. Phy. Chem. B113 (2009) 1389–1395. 10.1021/jp808522bSearch in Google Scholar
21. Atkin, R. and Warr, G. G.: Phase behavior and microstructure of microemulsions with a room-temperature ionic liquid as the polar phase. J. Phys. Chem. B111 (2007) 9309–9316. 10.1021/jp065020nSearch in Google Scholar
22. Zech, O., Thomaier, S., Bauduin, P., Rück, T., Touraud, D. and Kunz, W.: Microemulsions with an ionic liquid surfactant and room temperature ionic liquids as polar pseudo-phase. J. Phys. Chem. B113 (2008) 465–473. 10.1021/jp8061042Search in Google Scholar
23. Atkin, R., Bobillier, S. M. C. and Warr, G. G.: Propylammonium nitrate as a solvent for amphiphile self-assembly into micelles. lyotropic liquid crystals, and microemulsions, J. Phys. Chem. B114 (2009) 1350–1360. 10.1021/jp910649aSearch in Google Scholar
24. Zech, O., Thomaier, S., Kolodziejski, A., Touraud, D., Grillo, I. and Kunz, W.: Ethylammonium nitrate in high temperature stable microemulsions, J. Colloid Interface Sci.347 (2010) 227–232,. 10.1016/j.jcis.2010.03.031Search in Google Scholar
25. Zech, O., Thomaier, S., Kolodziejski, A., Touraud, D., Grillo, I. and Kunz, W.: Ionic liquids in microemulsions–a concept to extend the conventional thermal stability range of microemulsions, Chem.-Eur. J.16 (2010) 783–786. 10.1002/chem.200901101Search in Google Scholar
26. Thater, J. C., Gérard, V. and Stubenrauch, C.: Microemulsions with the ionic liquid ethylammonium nitrate: Phase behavior, composition, and microstructure, Langmuir30 (2014) 8283–8289. 10.1021/la501899cSearch in Google Scholar
27. Abuin, E., Lissi, E. and Olivares, K.: Tetradecyltrimethylammonium bromide water-in-oil microemulsions: Dependence of the minimum amount of alkanol required to produce a microemulsion with the alkanol and organic solvent topology, J. Colloid Interface Sci.276 (2004) 208–211. 10.1016/j.jcis.2004.03.026Search in Google Scholar
28. Das, K. P., Ceglie, A., Monduzi, M., Söderman, O. and Lindman, B.: Surfactant Self-association in Some Non-aqueous Systems. A Preliminary Report on Self-diffusion and NMR Relaxation Studies, in: Hoffmann, H. (Ed.), New Trends in Colloid Science, Steinkopff (1987) 167. 10.1007/3-798-50724-4_78Search in Google Scholar
29. Moulik, S. P., Aylward, W. M. and Palepu, R.: Phase behaviours and conductivity study of water/cpc/alkan-1-ol (C4 and C5)/1-hexane water/oil microemulsions with reference to their structure and related thermodynamics, Can. J. Chem.79 (2001) 1–12. 10.1139/v00-157Search in Google Scholar
30. Cates, M. E., Andelman, D., Safran, S. A. and Roux, D.: Theory of microemulsions: Comparison with experimental behavior, Langmuir4 (1988) 802–806. 10.1021/la00082a004Search in Google Scholar
31. Penders, M. H. G. M. and Strey, R.: Phase behavior of the quaternary system H2O/n-octane/C8E5/n-octanol: Role of the alcohol in microemulsions, J. Phys. Chem.99 (1995) 10313–10318. 10.1021/j100025a037Search in Google Scholar
32. Shinoda, K. and Lindman, B.: Organized surfactant systems: Microemulsions, Langmuir3 (1987) 135–149. 10.1021/la00074a001Search in Google Scholar
33. Digout, L., Bren, K., Palepu, R. and Moulik, S. P.: Interfacial composition, structural parameters and thermodynamic properties of water-in-oil microemulsions, Colloid Polym. Sci.279 (2001) 655–663. 10.1007/s003960000468Search in Google Scholar
34. Porada, J. H., Mansueto, M., Laschat, S. and Stubenrauch, C.: Microemulsions with novel hydrophobic ionic liquids, Soft Matter7 (2011) 6805. 10.1039/c1sm05821eSearch in Google Scholar
35. Somasundaran, P: Encyclopedia of Surface and Colloid Science, CRC Press (2006). 10.1081/E-ESCSSearch in Google Scholar
36. Cheng, S., Han, F., Wang, Y. and Yan, J.: Effect of cosurfactant on ionic liquid solubilization capacity in cyclohexane/TX-100/1-butyl-3-methylimidazolium tetrafluoroborate microemulsions. Colloids Surf. A317 (2008) 457–461. 10.1016/j.colsurfa.2007.11.021Search in Google Scholar
37. Paul, S. and Panda, A. K.: Combined phase behavior, dynamic light scattering, viscosity and spectroscopic investigations of a pyridinium-based ionic liquid-in-oil microemulsion, RSC Advances4 (2014) 32383–32390. 10.1039/C4RA01209GSearch in Google Scholar
38. Paul, S. and Panda, A. K.: Physico-chemical studies on ionic liquid microemulsion: Phase manifestation, formation dynamics, size, viscosity, percolation of electrical conductance and spectroscopic investigations on 1-butyl-3-methyl imidazolium methanesulfonate+water/Tween 20+n-pentanol/n-heptane pseudoternary system, Colloids Surf. A419 (2013) 113–124. 10.1016/j.colsurfa.2012.11.061Search in Google Scholar
39. Tomšič, M., Bešter-Rogač, M., Jamnik, A., Kunz, W., Touraud, D., Bergmann, A. and Glatter, O.: Ternary systems of nonionic surfactant Brij 35, water and various simple alcohols: Structural investigations by small-angle X-ray scattering and dynamic light scattering, J. Colloid Interface Sci.294 (2006) 194–211. 10.1016/j.jcis.2005.06.088Search in Google Scholar
40. Lam, A. C., Falk, N. A. and Schechter, R. S.: The thermodynamics of micro-emulsions, J. Colloid Interface Sci.120 (1987) 30–41. 10.1016/0021-9797(87)90320-1Search in Google Scholar
41. Sahandzhieva, K., Tuma, D., Breyer, S., Pérez-Salado Kamps, Á. and Maurer, G.: Liquid–liquid equilibrium in mixtures of the ionic liquid 1-n-butyl-3-methyl-imidazolium hexafluorophosphate and an alkanol, J. Chem. Eng. Data51 (2006) 1516–1525. 10.1021/je050474jSearch in Google Scholar
42. Swatloski, R. P., Visser, A. E., Reichert, W. M., Broker, G. A., Farina, L. M., -Holbrey, J. D. and Rogers, R. D.: Solvation of 1-butyl-3-methylimidazolium hexafluorophosphate in aqueous ethanol-a green solution for dissolving “hydrophobic” ionic liquids, Chem. Commun. (2001) 2070–2071. 10.1039/B106601NSearch in Google Scholar
43. Domańska, U., Rękawek, A. and Marciniak, A.: Solubility of 1-alkyl-3-ethyl-imidazolium-based ionic liquids in water and 1-octanol, J. Chem. Eng. Data53 (2008) 1126–1132. 10.1021/je700693zSearch in Google Scholar
44. Lagourette, B., Peyrelasse, J., Boned, C. and Clausse, M.: Percolative conduction in microemulsion type systems, Nature281 (1979) 60–62. 10.1038/281060b0Search in Google Scholar
45. Zheng, Y. and Eli, W.: Study on the polarity of bmimPF6/Tween80/toluene microemulsion characterized by UV-visible spectroscopy, J. Dispersion Sci. and Technol.30 (2009) 698–703. 10.1080/01932690802553890Search in Google Scholar
46. Gao, Y., Wang, S., Zheng, L., Han, S., Zhang, X., Lu, D., Yu, L., Ji, Y. and Zhang, G.: Microregion detection of ionic liquid microemulsions, J. Colloid Interface Sci.301 (2006) 612–616. 10.1016/j.jcis.2006.05.010Search in Google Scholar
47. Holbrey, J. D., Visser, A. E. and Rogers, R. D.: Solubility and solvention in Ionic liquids, in: Wasserscheid, P. and Welton, T. (Eds.), Ionic Liquids in Synthesis, Wiley-VCH (2003) 68. 10.1002/3527600701.ch9Search in Google Scholar
48. Clausse, M., Zradba, A. and Nicolas-Morgantini, L.: Water/ionic surfactant/alkanol/hydrocarbon systems. Realms-of-existence and transport properties of microemulsion type media, Colloid Polym. Sci.263 (1985) 767–770. 10.1007/BF01422860Search in Google Scholar
© 2015, Carl Hanser Publisher, Munich