Accessible Requires Authentication Published by De Gruyter February 23, 2016

Optimal Process Condition for Room Temperature Hetero-Aromatic Nitrogen Base Promoted Chromic Acid Oxidation of p-Chlorobenzaldehyde to p-Chlorobenzoic Acid in Aqueous Micellar Medium at Atmospheric Pressure

Optimale Prozessbedingungen für die mittels einer heteroaromatischen Stickstoffbase beschleunigten Chromsäureoxidation von p-Chlorbenzaldehyd zu p-Chlorobenzoesäure in wässrigen mizellaren Medien unter Atmosphä-rendruck
Susanta Malik, Aniruddha Ghosh and Bidyut Saha

Abstract

The present paper describes the kinetics of oxidation of p-chlorobenzaldehyde by chromic acid in aqueous and surfactant media in the presence of a promoter at 303 K. The rate constants were found to increase with introduction of hetero-aromatic nitrogen base promoters such as picolinic acid (PA), 2,2′-bipyridine (bipy) and 1,10-phenanthroline (phen). The product p-chlorobenzoic acid has been characterized by NMR. The mechanism of both unpromoted and promoted reaction paths has been proposed. In presence of the anionic surfactant sodium dodecyl sulfate (SDS), cationic surfactant N-cetylpyridinium chloride (CPC) and non-ionic surfactant Triton X-100 (TX-100) the reaction can undergo simultaneously in both aqueous and micellar phase with an enhanced rate of oxidation. Both SDS and TX-100 produce a normal micellar effect whereas CPC produces a reverse micellar effect in the presence of p-chlorobenzaldehyde.

Kurzfassung

Dieser Beitrag beschreibt die Oxidationskinetik von p-Chlorbenzaldehyd durch Chromsäure in wässrigen und mizellaren Medien in Gegenwart eines Promotors bei 303 K. Die Geschwindigkeitskonstanten nahmen bei Zugabe einer heteroaromatischen Stickstoffbase wie z.B. Pricolinsäure (PA), 2,2′-Bipyridin (bipy) und 1,10-Phenanthrolin (phen) als Promotor zu. Das Produkt p-Chlorbenzoesäure wurde mittels NMR charakterisiert. Mechanismen für den beschleunigten und nicht beschleunigen Reaktionsweg wurden vorgeschlagen. In Gegenwart des anionischen Tensids Natriumdodecylsulfat (SDS), des kationischen Tensids N-Cetylpyridiniumchlorids (CPC) und des nichtionischen Tensids Triton X-100 (TX-100) verläuft die Reaktion simultan sowohl im wässrigen als auch im mizellaren Medium bei einer höheren Oxidationsgeschwindigkeit. In Gegenwart von p-Chlorbenzaldehyd lieferten sowohl SDS als auch TX-100 einen normalen mizellaren Effekt, während CPC einen umgekehrten mizellaren Effekt zeigte.


*Correspondence address, Prof. Dr. Bidyut Saha, Homogeneous Catalysis Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, Pin 713104, WB, India. Tel.: +91-342-2533913 (O), Fax: +91-342-2530452 (O), E-Mail:

Susanta Malik: He was born in Kalna, Burdwan in 1988. He passed his M.Sc degree from the University of Burdwan in 2011 and got UGC-RGNF fellowship on the year 2012. He is working in my lab in “Homogeneous Catalysis” division.

Aniruddha Ghosh: He was born in Raniganj, in 1988. He passed his M.Sc degree from the University of Burdwan in 2010 and got NET-UGC fellowship on the year 2010. He is working in my lab in “Bio-remediation” division.

Dr. Bidyut Saha: He was born in Birbhum, WB, India in 1975. He obtained his Ph.D degree from Visva Bharati University, India in 2007. He was a visiting scientist for the year 2009–2010 in the Department of Chemistry, UBC, Canada. Dr. Saha is presently working as an Associate Professor in the Department of Chemistry, Burdwan University, India. His area of interests is bioremediation of toxic metal, micellar catalysis and inorganic reaction mechanism. He has already published seventy papers in international journals.


References

1. Vanarendonk, A. M. and Cupery, M. E.: The reaction of acetophenone derivatives with hypochlorite. J. Am. Chem. Soc.53 (1931) 31853186. 10.1021/ja01359a506 Search in Google Scholar

2. Tan, Z., Sun, L., Meng, S., Li, L., Xu, F., Yu, P., Liu, B. and Zhang, J.: Heat capacities and thermodynamic functions of p-chlorobenzoic acid. J. Chem. Thermodyn.34 (2002) 14171429. 10.1016/S0021-9614(02)00165-9 Search in Google Scholar

3. Colapietro, M. and Domenicano, A.: Structural studies of benzene derivatives. X. Refinement of the structure of p-chlorobenzoic acid. Acta Cryst.B38 (1982) 19531957. 10.1107/S0567740882007651 Search in Google Scholar

4. Ferreira, P., Ortega, A. H., Herguedas, B., Rencoret, J., Gutierrez, A., Martinez, M. J., Barbero, J., Medina, J. M. and Martinez, A. T.: Kinetic and chemical characterization of aldehyde oxidation by fungal aryl-alcohol oxidase. Biochem. J.425 (2010) 585593. 10.1042/BJ20091499 Search in Google Scholar

5. Singh, A. K., Sharma, R., Singh, A. K. and Singh, D. P.: Environmental friendly conversion of organic compounds with H2O2 in the presence of iridium(III). J. Environ. Sci. Toxicol. Food. Technol.1 (2012) 13. Search in Google Scholar

6. Tandon, P. K., Dwivedi, P. B. and Singh, S.: Liquid-phase oxidation of some aromatic aldehydes, hydrocarbons, and alcohols by cerium (IV) catalyzed by iridium(III) in acidic medium. Synth. Commun.39 (2009) 19201928. 10.1080/00397910802621707 Search in Google Scholar

7. Tian, Q., Shi, D. and Sha, Y.: CuO and Ag2O/CuO catalyzed oxidation of aldehydes to the corresponding carboxylic acids by molecular oxygen. Molecules13 (2008) 948957. 10.3390/molecules13040948 Search in Google Scholar

8. Kalita, D., Radaram, B., Brooks, B., Kannam, P. P. and Zhao, X.: Photocatalytic oxidation of hydrocarbons in water by ruthenium complexes. Chem. Cat. Chem.3 (2011) 571573. 10.1002/cctc.201000335 Search in Google Scholar

9. Zhao, G., Hu, H., Deng, M. and Lu, Y.: Microstructured Au/Ni-fiber catalyst for low-temperature gas-phase selective oxidation of alcohols. Chem. Commun.47 (2011) 96429644. 10.1039/C1CC12964C Search in Google Scholar

10. Ghosh, A., Saha, R., Mukherjee, K., Sar, P., Ghosh, S. K., Malik, S., Bhattacharyya, S. S. and Saha, B.: Rate enhancement via micelle encapsulation for room temperature metal catalyzed Ce(IV) oxidation of p-chlorobenzaldehyde to p-chlorobenzoic acid in aqueous medium at atmospheric pressure. J. Mol. Liq.190 (2014) 8193. 10.1016/j.molliq.2013.10.029 Search in Google Scholar

11. Pi, Y., Schumacher, J. and Jekel, M.: The use of p-chlorobenzoic acid (pCBA) as an ozone/hydroxyl radical probe compound. Ozone Sci. Eng.27 (2005) 431436. 10.1080/01919510500349309 Search in Google Scholar

12. Ghosh, S. K., Saha, R., Mukherjee, K., Ghosh, A., Bhattacharyya, S. S. and Saha, B.: Micellar catalysis on 1,10-phenanthroline promoted chromic acid oxidation of propanol in aqueous media. J. Kor. Chem. Soc.56 (2012) 164168. 10.5012/jkcs.2012.56.1.164 Search in Google Scholar

13. Malik, S., Ghosh, A., Mukherjee, K. and Saha, B.: Combination of best promoter and micellar catalyst for Cr(VI) oxidation of lactose to lactobionic acid in aqueous medium at room temperature. Tenside Surf. Det.51 (2014) 325332. 10.3139/113.110314 Search in Google Scholar

14. Kozuh, N., Stupar, J. and Gorenc, B.: Reduction and oxidation processes of chromium in soils. Environ. Sci. Technol.34 (2000) 112119. 10.1021/es981162m Search in Google Scholar

15. Sundaram, S. and Raghavan, P. S.: Chromium-VI reagents: Synthetic application; Springer: Berlin (2011) 6. 10.1007/978-3-642-20817-1 Search in Google Scholar

16. Katre, Y. R., Singh, M., Patil, S. and Singh, A. K.: Effect of cationic micellar aggregates on the kinetics of dextrose oxidation by N-bromophthalimide. J. Dispersion Sci. Technol.29 (2008) 14121420. 10.1080/01932690802313410 Search in Google Scholar

17. Saha, R., Ghosh, A. and Saha, B.: Micellar catalysis on 1,10-phenanthroline promoted hexavalent chromium oxidation of ethanol. J. Coord. Chem.64(2011) 37293739. 10.1080/00958972.2011.630463 Search in Google Scholar

18. Basu, A., Ghosh, S. K., Saha, R., Ghosh, A., Mukherjee, K. and Saha, B.: Micellar catalysis of chromic acid oxidation of methionine to industrially important methylthiol in aqueous media at room temperature. Tenside. Surf. Det.50 (2013) 9498. 10.3139/113.110237 Search in Google Scholar

19. Astray, G., Cid, A., Manso, J. A., Mejuto, J. C., Moldes, O. and Morales, J.: Influence of anionic and nonionic micelles upon hydrolysis of 3-hydroxy-carbofuran. Int. J. Chem. Kinet.43 (2011) 402408. 10.1002/kin.20563 Search in Google Scholar

20. Mukherjee, K., Saha, R., Ghosh, A., Ghosh, S. K. and Saha, B.: Combination of best promoter and catalyst for hypervalent chromium oxidation of l-sorbose to lactone of C5 aldonic acid in aqueous media at room temperature. J. Mol. Liq.179 (2013) 16. 10.1016/j.molliq.2012.12.012 Search in Google Scholar

21. Sodhi, R. K., Paul, S. and Clark, J. H.: A comparative study of different metal acetylacetonates covalently anchored onto amine functionalized silica: a study of the oxidation of aldehydes and alcohols to corresponding acids in water. Green Chem.14 (2012) 16491656. 10.1039/C2GC35289C Search in Google Scholar

22. Banerji, J., Kotai, L., Sharma, P. K. and Banerji, K. K.: Kinetics and mechanism of the oxidation of substituted benzaldehydes with bis(pyridine) silver permanganate. Eur. Chem. Bull.1 (2012) 135140. Search in Google Scholar

23. Graham, G. T. E. and Westheirier, F. H.: The kinetics of the chromic acid oxidation of benzaldehyde. J. Am. Chem. Soc.80 (1958) 30303033. 10.1021/ja01545a032 Search in Google Scholar

24. Medien, H. A. A.: Kinetics of oxidation of benzaldehydes by quinolinium dichromate. Z. Naturforsch.58b (2003) 12011205. 10.1515/znb-2003-1207 Search in Google Scholar

25. Mukherjee, K., Saha, R., Ghosh, A., Ghosh, S. K. and Saha, B.: Efficient combination of promoter and catalyst for chromic acid oxidation of propan-2-ol to acetone in aqueous acid media at room temperature. Spectrochim. Acta, Part A.101 (2013) 294305. 10.1016/j.saa.2012.09.095 Search in Google Scholar

26. Wiberg, K. B. and Mill, T.: The kinetics of the chromic acid oxidation of benzaldehyde. J. Am. Chem. Soc.80 (1958) 30223029. 10.1021/ja01545a032 Search in Google Scholar

27. Ghosh, S. K., Saha, R., Ghosh, A., Mukherjee, K. and Saha, B.: Micellar catalysis on 1,10-phenanthroline promoted chromic acid oxidation of glycerol in aqueous media. Tenside Surf. Det.49 (2012) 370375. 10.3139/113.110204 Search in Google Scholar

28. Saha, R., Ghosh, A., Sar, P., Saha, I., Ghosh, S. K., Mukherjee, K. and Saha, B.: Combination of best promoter and micellar catalyst for more than kilo-fold rate acceleration in favor of chromic acid oxidation of d-galactose to d-galactonic acid in aqueous media at room temperature. Spectrochim. Acta, Part A.116 (2013) 524531. 10.1016/j.saa.2013.07.065 Search in Google Scholar

29. Ghosh, A., Saha, R., Mukhejee, K., Ghosh, S. K., Bhattacharyya, S. S., Laskar, S. and Saha, B.: Selection of suitable combination of nonfunctional micellar catalyst and heteroaromatic nitrogen base as promoter for chromic acid oxidation of ethanol to acetaldehyde in aqueous medium at room temperature. Int. J. Chem. Kinet.45 (2013) 175186. 10.1002/kin.20754 Search in Google Scholar

30. Mansoor, S. S. and Shafi, S. S.: Studies on the kinetics of benzyltrimethylammonium fluorochromate oxidation of substituted benzaldehydes in aqueous Acetic Acid Medium. Int. J. Chem. Tech. Res.1 (2009) 12061212. Search in Google Scholar

31. Seok, W. K. and Meyer, T.: Mechanism of oxidation of benzaldehyde by polypyridyl oxo complexes of Ru(IV). Inorg. Chem.44 (2005) 39313941. 10.1021/ic040119z Search in Google Scholar

32. Saha, R., Ghosh, A. and Saha, B.: Combination of best promoter and micellar catalyst for chromic acid oxidation of 1-butanol to 1-butanal in aqueous media at room temperature. Spectrochim. Acta, Part A124 (2014) 130137. 10.1016/j.saa.2013.12.101 Search in Google Scholar

33. Ghosh, S. K., Basu, A., Saha, R., Nandi, R. and Saha, B.: Kinetics and mechanism of 2, 2′- bipyridyl catalyzed chromium(VI) oxidation of formic acid in the presence and absence of surfactants. Current Inorg. Chem.2 (2012) 8691. 10.2174/1877944111202010086 Search in Google Scholar

34. Ghosh, S. K., Ghosh, A., Saha, R. and Saha, B.: Micellar catalysis on pentavalent vanadium ion oxidation of ethanol in aqueous acid media. Tenside Surf. Det.49 (2012) 296299. 10.3139/113.110194 Search in Google Scholar

35. Ghosh, A., Saha, R., Mukhejee, K., Ghosh, S. K., Bhattacharyya, S. S. and Saha, B.: Micellar catalysis on 1,10-phenanthroline promoted chromic acid oxidation of propan-2-ol in aqueous media. J. Chem. Res.36 (2012) 347350. 10.3184/174751912X13354447752233 Search in Google Scholar

36. Ghosh, S. K., Basu, A., Saha, R., Ghosh, A., Mukherjee, K. and Saha, B.: Micellar catalysis on picolinic acid promoted hexavalent chromium oxidation of glycerol. J. Coord. Chem.65 (2012) 11581177. 10.1080/00958972.2012.669035 Search in Google Scholar

37. Khan, Z., MasanS., Raju and Ud-Din, K.: A mechanistic study of the ethylenediaminetetraacetic acid-, 2,2′-bipyridyl-, and manganese(II)-assisted one-step two- and three-electron oxidation of lactic acid by chromium(VI). Transition Met. Chem.28 (2003) 881887. 10.1023/A:1026303415289 Search in Google Scholar

38. Ghosh, A., Saha, R. and Saha, B.: Effect of CHAPS and CPC micelles on Ir(III) catalyzed Ce(IV) oxidation of aliphatic alcohols at room temperature and pressure. J. Mol. Liq.196 (2014) 223237. 10.1016/j.molliq.2014.03.037 Search in Google Scholar

Received: 2014-12-15
Accepted: 2015-08-31
Published Online: 2016-02-23
Published in Print: 2016-01-20

© 2016, Carl Hanser Publisher, Munich