Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 7, 2016

Synthesis, Surface and Biological Activities of Cationic Surfactants Based on Glycine Moiety

Synthese, biologische und Oberflächenaktivitäten von kationischen, auf Glycin basierender Tenside
  • Fatma H. Abdel-Salam and Sharbat A. Baker


Two series of cationic surfactants based on glycine molecule as sulfonate salt of N,N-diethyl glycine fatty esters having a hydrocarbon chain length of C12,C16 and C18 followed by quaternerization with ethyl iodide were synthesized. Their chemical structures were confirmed using IR,1H-NMR, and mass spectroscopy. The surface activity of these amphiphiles has been determined by measurement of their surface tension. Parameters like surface tension (γ), critical micelle concentration (cmc), effectiveness (Πcmc), efficiency (pC20), maximum surface excess (Γmax), minimum surface area (Amin) and Gibbs free energy of the micellization (ΔGmic) and adsorption (ΔGads) have been determined from the measurements obtained by surface tension method. All these surfactants showed much lower CMC values compared to the similar hydrophobic chain length surfactant. All synthesized compounds have been evaluated for their biological activity against bacteria and fungi.


Es wurde eine Reihe kationischer Tenside aus Glycin als Sulfonatsalz der N,N-Diethylglycinfettsäureester mit Kohlenstoffkettenlängen von C12, C16 und C18 bei nachfolgender Quaternisierung mit Ethyliodid synthetisiert. Ihre Strukturen wurden mittels IR, 1H-NMR und Massenspektrometrie bestätigt. Die Oberflächenaktivität dieser Amphiphile wurde bestimmt mittels Messung der Oberflächenspannung. Aus den Messungen der Oberflächenspannung wurden Parameter wie die Oberflächenspannung (γ), die kritische Mizellenbildungskonzentration (CMC), die Effektivität (ΠCMC), die Effizienz (pC20), der maximale Oberflächenüberschuss (Γmax), der minimale Oberflächenplatzbedarf (Amin), die freie Gibbs Energie der Mizellenbildung (ΔGmic) und die der Adsorption (ΔGads) ermittelt. Alle untersuchten Tenside hatten kleinere CMCs als Tenside mit einem vergleichbar langen Kohlenwasserstoffrest. Des Weiteren wurden die Tenside hinsichtlich ihrer biologischen Aktivität gegenüber Bakterien und Pilzen untersucht.

*Correspondence address, Prof. Dr. Fatma Abdel-Salam, Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, B.O. Box, 11754, Egypt, E-Mail:

Fatma H. Abdel-salam received her B.Sc with honors in chemistry (1983) and her MSc. (1989), PhD (1994), assist. prof (2005) and professor (2011) in applied organic chemistry from the faculty of science in al-azhar university, Egypt. She is interested in the synthesis of surfactant, surface and thermodynamic properties of surfactant solutions and their applications.

Sharbat A. Baker received her B.Sc in chemistry (2001) and her MSc. (2006), PhD (2011) in applied organic chemistry from the faculty of science in al-azhar university, Egypt. She is interested in the synthesis of surfactant and their applications.


1. Rico-Lattes, I. and Lattes, A.: Synthesis of new sugar-based surfactants having biological applications: key role of their self- association, Colloids Surf. A123 (1997) 3748. 10.1016/S0927-7757(96)03778-8Search in Google Scholar

2. Pinazo, A., Pons, R., Perez, L. and Infante, M. R.: Amino Acids as Raw Material for Biocompatible Surfactants, Ind. Eng. Chem. Res.50 (2011) 48054817. 10.1021/ie1014348Search in Google Scholar

3. Tehrani-Bagha, A. R. and Holmberg, K.: Cationic Ester-Containing Gemini Surfactants: Physical–Chemical Properties, Langmuir26 (2010) 92769282. 10.1021/la1001336Search in Google Scholar PubMed

4. Infante, M. R., Molinero, J., Erra, P., Julia, R. and Garcia, J. J.: A Comparative Study on Surface Active and Antimicrobial Properties of Some Nα-Lauroyl-L-α,ω-Dibasic Amino acids Derivatives, Fette. Seifen. Anstrichmittel.87 (8) (1983) 309313. 10.1002/lipi.19850870805Search in Google Scholar

5. Pegiadou, S., Perez, L. and Infante, M. R.: Synthesis, characterization and surface properties of N-tryptophan-glycerol-ether surfactants, J. Surfactants Deterg.3 (4) (2000) 517525. 10.1007/s11743-000-0151-ySearch in Google Scholar

6. Seguer, J., Selve, C., Allouch, M. and Infante, M. R.: Nonionic amphiphilic compounds from lysine as molecular mimics of lecithins, Journal of the American Oil Chemists' Society73 (1) (1996) 7986. 10.1007/BF02523452Search in Google Scholar

7. Allouch, M., Infante, M.R., Seguer, J., Stebe, M.J. and Selve, C.: Nonionic amphiphilic compounds from aspartic and glutamic acids as structural mimics of lecithins, J. Am. Oil Chem. Soc.73 (1) (1996) 8796. 10.1007/BF02523453Search in Google Scholar

8. Pravin, U. S. and Jyoti, D. M.: Cationic Surfactants from Arginine: Synthesis and Physicochemical Properties, American Journal of Chemistry2 (4) (2012) 186190. 0.5923/j.chemistry.20120204.02Search in Google Scholar

9. Perez, L., Pinazo, A., Vinardell, P., Clapes, P., Angelet, M., and Infante, M. R.: Synthesis and biological properties of dicationic arginine–diglycerides, New J. Chem.26 (2002) 12211227. 10.1039/b203896jSearch in Google Scholar

10. Perez, L., Infante, M. R., Angelet, M., Clapes, P. and Pinazo, A.: Presented at the XV Conference European Colloid and Interface Society, Coimbra, Portugal, September(2001).Search in Google Scholar

11. Brigham, K. L., Meyrick, B., Christman, B., Magnuson, M., King, G. and Berry, L. C.: In vivo transfection of murine lungs with a functioning prokaryotic gene using a liposome vehicle, Am. J. Med. Sci.298 (4) (1989) 278281. 10.1097/00000441-198910000-00013Search in Google Scholar PubMed

12. Tang, F. X. and Hughes, J. A.: Synthesis of a single-tailed cationic lipid and investigation of its transfection, J. Controlled Release62 (3) (1999) 45358. 10.1016/S0168-3659(99)00158-3Search in Google Scholar

13. Schulze, U., Schmidt, H. W. and Safinya, C. R.: Synthesis of Novel Cationic Poly(Ethylene Glycol) Containing Lipids, Bioconjugate Chem.10 (3) (1999) 548552. 10.1021/bc9801068Search in Google Scholar PubMed

14. Heyes, J., Niculescu-Duvaz, D., Cooper, R. G. and Springer, J. C.: Synthesis of Novel Cationic Lipids: Effect of Structural Modification on the Efficiency of Gene Transfer, J. Med. Chem.45 (1) (2002) 99114. 10.1021/jm010918gSearch in Google Scholar PubMed

15. Kiehlbauch, J. A., Hannett, G. E, Salfinger, M., ArchinalW., Monserrai, C. and Clint, J.: Use of the national committee for clinical laboratory standards guidelines for disk diffusion susceptibility testing in New York state laboratories, Microbiol38 (2000) 33413348. 0095-1137/00/04.0010Search in Google Scholar

16. Zhang, Q., Gao, Z. N., Xu, F., Tai, S. X., Liu, X. G., Mo, S. B. and Niu, F.: Surface tension and aggregation properties of novel cationic Gemini surfactants with diethylammonium head groups and a diamido spacer, Langmuir28 (2012) 1197911987. 10.1021/la3011212Search in Google Scholar PubMed

17. Kamboj, R., Singh, S., Bhadani, A., Kataria, H. and Kaur, G.: Gemini imidazolium surfactants: synthesis and their biophysiochemical study, Langmuir28 (2012) 1196911978. 10.1021/la300920pSearch in Google Scholar PubMed

18. Kamboj, R., Singh, S. and Chauhan, V.: Synthesis, characterization and surface properties of N-(2-hydroxyalkyl)-N-(2-hydroxyethyl) imidazolium surfactants, Colloids and Surfaces A: Physicochem. Eng. Aspects441 (2014) 233241. 10.1016/j.colsurfa.2013.08.063Search in Google Scholar

19. Ren, C., Wang, F., Zhang, Z., Nie, H., Li, N. and Cui, M.: Synthesis, surface activity and aggregation behavior of Gemini imidazolium surfactants 1,3-bis(3-alkylimidazolium-1-yl)propane bromide, Colloids and Surfaces A: Physicochem. Eng. Aspects467 (2015) 18. 10.1016/j.colsurfa.2014.11.031Search in Google Scholar

20. Nabel, A. N. and Salah, M. T.: Characterization, surface properties and biological activity of some synthesized anionic surfactants, Journal of Industrial and Engineering Chemistry20 (2014) 44634472. 10.1016/j.jiec.2014.02.018Search in Google Scholar

21. Rongqiang, L., Fengmei, Y., Junli, Z., Chenfeng, X. and Jinben, W.: The self-assembly properties of a series of polymerizable cationic gemini surfactants: Effect of the acryloxyl group, Colloids and Surfaces A: Physicochem. Eng. Aspects444 (2014) 276282. 10.1016/j.colsurfa.2013.12.079Search in Google Scholar

22. Pérez, L, Pinazo, A, Pons, R. and Infante, M.: Gemini surfactants from natural amino acids, Advances in Colloid and Interface Science205 (2014) 134155. 10.1016/j.cis.2013.10.020Search in Google Scholar PubMed

23. Patial, P., Shaheen, A. and Ahmada, I.: Synthesis, surface active and thermal properties of novel imidazolium cationic monomeric surfactants, J. of Industrial and Engineering Chemistry20 (2014) 42674275. 10.1016/j.jiec.2014.01.032Search in Google Scholar

24. Ismail, A. A., Abdelfatah, M. B., Mohammed, M., Abdallah, A. E. and Ahmed, I. A.: Synthesis and Biocidal Activity of Some Naphthalene- Based Cationic Surfactants, J Surfact Deterg.15 (2012) 223234. 10.1007%2Fs11743-011-1286-zSearch in Google Scholar

25. Cronin, M. T., Aptula, A. O., Dearden, J. C., Duffy, J. C., Ntezeva, T. I., Patel, H. P, Philip, H. R., Wayne, S. T., Andrew, P. W., Konstantinos, V. and Gerrit, S.: Structure-based classification of antibacterial activity, J. Chem. Inf. Comput. Sci.42 (2002) 869878. 10.1021/ci025501dSearch in Google Scholar PubMed

26. Li, F., Rosen, M. J., Morrall, S. W. M. and Versteeg, D. J.: The relationship between the interfacial properties of surfactants and their toxicity to aquatic organisms. Environ Sci Technol35 (2001) 954959. 10.1021/es0015141Search in Google Scholar PubMed

Received: 2015-08-04
Accepted: 2015-09-11
Published Online: 2016-11-07
Published in Print: 2016-11-15

© 2016, Carl Hanser Publisher, Munich

Downloaded on 29.11.2023 from
Scroll to top button