Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 7, 2016

Synthesis and Surface/Interfacial Properties of Novel Dialkyl Disulfonate Gemini Surfactants Derived from 1,3,5-triazine

Synthese und Ober-/Grenzflächeneigenschaften von neuen, aus 1,3,5-Triazin abgeleiteten Dialkyldisulfonat-Geminitensiden
  • Ruixia Niu , Chao Wang , Hua Song , Jingling Wang , Daqiang Wang and Weidong Ren

Abstract

A series of novel dialkyl disulfonate Gemini surfactants (Cn-GSBS, n = 8, 12, 14, 16, n is the carbon number of the hydrophobic chain) was synthesized from cyanuric chloride, aliphatic amine, ethylenediamine, N,N'-dimethyl-1,3-propyldiamine and sodium 2-chloroethanesulfonate. The chemical structures of the prepared compounds were confirmed by FT-IR and 1H NMR. The critical micelle concentrations (CMC) in aqueous solutions at 25°C were determined by surface tension method. The CMC value decreased with increasing length of the carbon chain. The CMC reached a minimum as low as 5 × 10−5 mol · L−1 for C16-GSBS. The interfacial tensions (IFT) between Daqing crude oil and Cn-GSBS surfactant solutions were also measured. The effects of the concentration of Na2CO3, the concentration and carbon chain length of Cn-GSBS on the IFT of crude oil-water were investigated in detail. The results show that, for the aqueous surfactant system containing the weak base Na2CO3, oil-water interfacial tension can be reduced to 10−2 mN m−1 orders of magnitude. The results also indicate that with the increase of surfactant concentration and the chain length, the oil-water interfacial tension decreased markedly, which indicates that Cn-GSBS surfactants have a good interface activity. These surfactants are good candidates for weak base-surfactant-polymer EOR process.

Kurzfassung

Es wurde ein Reihe neuer Dialkyldisulfonat-Geminitenside (Cn-GSBS, n = 8, 12, 14, 16, n = Anzahl der Kohlenstoffatome in der hydrophoben Kette) aus Cyanurchlorid, aliphatischem Amin, Ethylenamin, N,N'-Dimethyl-1,3-propyldiamin und Natrium-2-Chlorethansulfonat synthetisiert. Die chemischen Strukturen der erzeugten Verbindungen wurden mittels FT-IR und 1H NMR bestätigt. Die kritische Mizellenbildungskonzentrationen in den wässrigen Phasen (CMC) bei 25 °C wurden mittels Oberflächenspannungsmessungen bestimmt. Die CMC nahmen mit zunehmender Kohlenwasserstoffkettenlänge ab. Die CMC erreichte ein Minimum von 5 × 10−5 mol · L−1 (C16-GSBS). Die Grenzflächenspannungen (ITF) zwischen dem Daqing-Rohöl und den Cn-GSBS-Tensiden wurden ebenfalls gemessen. Der Einfluss der Na2CO3- und der Cn-GSBS-Konzentration sowie der Cn-GSBS-Kohlenwasserstoffkettenlänge auf die ITF zwischen dem Rohöl und Wasser wurde im Detail untersucht. Die Ergebnisse zeigen, dass in den wässrigen Tensidsystemen, die die schwachen Base Na2CO3 enthalten, die Öl-Wasser-Grenzflächenspannung bis zu einer Größenordnung von 10−2 mN m−1 reduziert werden kann. Die Resultate zeigen ebenfalls, dass mit zunehmender Tensidkonzentration und Kettenlänge die Grenzflächenspannung deutlich abnimmt, was auf eine gute Grenzflächenaktivität der Cn-GSBS-Tenside hinweist. Diese Tenside sind gut geeignet für den EOR-Prozess mit schwach basischen Tensiden und Polymer.


*Correspondence address, Mrs. Hua Song, College of Chemistry & Chemical Engineering Northeast Petroleum University, Daqing 163318, Heilongjiang, China, E-Mail:

Ruixia Niu is currently a teacher at the College of Chemistry & Chemical Engineering, Northeast Petroleum University of China. She received his M.S. in Chemical Technology of Northeast Petroleum University. Her research interest includes synthesis and application of green surfactants and oilfield chemicals.

Chao Wang is a Master's student at the College of Chemistry & Chemical Engineering, Northeast Petroleum University of China. His research interests are the synthesis and characterization of surfactants.

Hua Song is currently a teacher at the College of Chemistry & Chemical Engineering, Northeast Petroleum University of China. She received her M.S. and Ph. D. in Chemical Technology of Northeast Petroleum University. Her research interests include synthesis & application.

Jingling Wang is a Master's student at the College of Chemistry & Chemical Engineering, Northeast Petroleum University of China. She research interests are the synthesis and characterization of surfactants.

Daqiang Wang is a Master's student at the College of Chemistry & Chemical Engineering, Northeast Petroleum University of China. His research interests are the synthesis and characterization of surfactants.

Weidong Ren is a Master's student at the College of Chemistry & Chemical Engineering, Northeast Petroleum University of China. His research interests are the synthesis and characterization of surfactants.


References

1. Jiang, M. Y., Wang, K. M., Ma, G. P., et al.: Ultraviolet photopolymerization induced by a triazine derivative, J. Appl. Polym. Sci.121 (2011) 20132017. 10.1002/app.33774Search in Google Scholar

2. Xie, K. L., Sun, Y. and Hou, A. Q.: Diffusion properties of reactive dyes into net modified cotton cellulose with triazine derivative, J. Appl. Polym. Sci.103 (2007) 21662171. 10.1002/app.25097Search in Google Scholar

3. Qiao, W. D., Qiao, W. H., Peng, H, et al.: Synthesis and surface activity properties of symmetric double chains alkylbetaine surfactants derived from s-triazine, Colloids Surf. A: Physicochem. Eng. Asp.405 (2012) 4550. 10.1016/j.colsurfa.2012.04.034Search in Google Scholar

4. Li, X., Hu, Z. Y., ZhuH.L., et al.: Synthesis and properties of novel alkyl sulfonate Gemini surfactants, J. Surfactants Deterg.13 (2010) 353359. 10.1007/s11743-010-1188-5Search in Google Scholar

5. Zana, R. and Xia, J. D.: Gemini surfactants: synthesis, interfacial and solution-phase behavior, and applications, in: Surfactant science series, Marcel Dekker Inc., New York, (2004) 117. 10.1016/j.jcis.2003.12.054Search in Google Scholar

6. ZanaR.: Dimeric (Gemini) surfactants: effect of the spacer group on the association behavior in aqueous solution, J. Colloid Interface Sci.248 (2002) 203220. 10.1006/jcis.2001.8104Search in Google Scholar

7. Zhu, Y. P., Masuyama, A., Kirito, Y., et al.: Preparation and properties of double-or triple-chain surfactants with two sulfonate groups derived from N-Acyldiethanolamines, J. Am. Oil Chem. Soc.68 (1991) 539543. 10.1007/BF02663831Search in Google Scholar

8. Magdassi, S., Ben Moshe, M., Talmon, Y., et al.: Microemulsions based on anionic Gemini surfactant, Colloids Surf. A: Physicochem. Eng. Asp.212 (2003) 17. 10.1016/S0927-7757(02)00294-7Search in Google Scholar

9. Rosen, M. J. and KunjappuJ.T.: Surfactants and Interfacial Phenomena (4th Ed.), John Wiley & Sons Inc., Hoboken, N. J. (2012). 10.1002/9781118228920Search in Google Scholar

10. Yoshimura, T. and Esumi, K.: Synthesis and surface properties of anionic Gemini surfactants with amide groups, J. Colloid Interface Sci.276 (2004) 231238. 10.1016/j.jcis.2004.03.045Search in Google Scholar PubMed

11. Du, X. G., Lu, Y., Li, L., et al.: Synthesis and unusual properties of novel alkylbenzene sulfonate Gemini surfactants, Colloids Surf. A: Physicochem. Eng. Asp.290 (2006) 132137. 10.1016/j.colsurfa.2006.05.013Search in Google Scholar

12. Yoshimura, T., Ishihara, K. and Esumi, K.: Sugar-based Gemini surfactants with peptide bonds synthesis, adsorption, micellization, and biodegradability, Langmuir.21 (2005) 1040910415. 10.1021/la051614qSearch in Google Scholar

13. Petrova-Miladinova, P. and Konstantinova, T. N.: On the synthesis of some reactive triazine azodyes containing tetramethylpiperidine fragment, Dyes Pigm.67 (2005) 6369. 10.1016/j.dyepig.2004.10.011Search in Google Scholar

14. Konstantinova, T. and Petrova, P.: On the synthesis of some bifunctional reactive triazine dyes, Dyes Pigm.52 (2002) 115120. 10.1016/S0143-7208(01)00080-8Search in Google Scholar

15. Dong, M. Z., Ma, S. Z. and LiuQ.: Enhanced heavy oil recovery through interfacial instability: A study of chemical flooding for Brintnell heavy oil, Fuel.88 (2009) 10491056. 10.1016/j.fuel.2008.11.014Search in Google Scholar

16. Du, X. G., Lu, Y., Li, L., et al.: Synthesis and unusual properties of novel alkylbenzene sulfonate Gemini surfactants, Colloids Surf. A: Physicochem. Eng. Asp.290 (2006) 132137,. 10.1016/j.colsurfa.2006.05.013Search in Google Scholar

17. Jing, L., Qiao, W., Luo, L., et al.: Design and Surface/Interfacial Properties of Asymmetric Triazine Carboxyl Betaine Surfactants, J. Surfactants Deterg.17 (2014) 629636. 10.1007/s11743-013-1555-0Search in Google Scholar

18. Xie, Z. F. and Feng, Y. J.: Synthesis and properties of alkylbetaine zwitterionic Gemini surfactants, J. Surfactants Deterg.13 (2010) 5157. 10.1007/s11743-009-1152-4Search in Google Scholar

19. Salager, J. L., Forgiarini, A. M. and Bullón, J.: How to attain ultralow interfacial tension and three-phase behavior with surfactant formulation for enhanced oil recovery: a review. Part 1. Optimum formulation for simple surfactant–oil–water ternary systems, J. Surfactants Deterg.16 (2013) 449472. 10.1007/s11743-013-1470-4Search in Google Scholar

20. Xue, C. L., Zhu, H. L., Zhang, T. T., et al.: Synthesis and properties of novel alkylbetaine zwitterionic Gemini surfactants derived from cyanuric chloride, Colloids Surf. A: Physicochem. Eng. Asp.375 (2011) 141146. 10.1016/j.colsurfa.2010.12.004Search in Google Scholar

21. Florence, T. and Hines, M.: Cosmetic formulation, U.S. Patent 20130209504 A1, 2013.Search in Google Scholar

22. England, D. C. and Berg, J. C.: Transfer of surface-active agents across a liquid-liquid interface, AIChE.17 (1971) 313322. 10.1002/aic.690170216Search in Google Scholar

Received: 2015-12-06
Accepted: 2016-05-17
Published Online: 2016-11-07
Published in Print: 2016-11-15

© 2016, Carl Hanser Publisher, Munich

Downloaded on 9.12.2023 from https://www.degruyter.com/document/doi/10.3139/113.110466/html
Scroll to top button