Abstract
A series of novel dialkyl disulfonate Gemini surfactants (Cn-GSBS, n = 8, 12, 14, 16, n is the carbon number of the hydrophobic chain) was synthesized from cyanuric chloride, aliphatic amine, ethylenediamine, N,N'-dimethyl-1,3-propyldiamine and sodium 2-chloroethanesulfonate. The chemical structures of the prepared compounds were confirmed by FT-IR and 1H NMR. The critical micelle concentrations (CMC) in aqueous solutions at 25°C were determined by surface tension method. The CMC value decreased with increasing length of the carbon chain. The CMC reached a minimum as low as 5 × 10−5 mol · L−1 for C16-GSBS. The interfacial tensions (IFT) between Daqing crude oil and Cn-GSBS surfactant solutions were also measured. The effects of the concentration of Na2CO3, the concentration and carbon chain length of Cn-GSBS on the IFT of crude oil-water were investigated in detail. The results show that, for the aqueous surfactant system containing the weak base Na2CO3, oil-water interfacial tension can be reduced to 10−2 mN m−1 orders of magnitude. The results also indicate that with the increase of surfactant concentration and the chain length, the oil-water interfacial tension decreased markedly, which indicates that Cn-GSBS surfactants have a good interface activity. These surfactants are good candidates for weak base-surfactant-polymer EOR process.
Kurzfassung
Es wurde ein Reihe neuer Dialkyldisulfonat-Geminitenside (Cn-GSBS, n = 8, 12, 14, 16, n = Anzahl der Kohlenstoffatome in der hydrophoben Kette) aus Cyanurchlorid, aliphatischem Amin, Ethylenamin, N,N'-Dimethyl-1,3-propyldiamin und Natrium-2-Chlorethansulfonat synthetisiert. Die chemischen Strukturen der erzeugten Verbindungen wurden mittels FT-IR und 1H NMR bestätigt. Die kritische Mizellenbildungskonzentrationen in den wässrigen Phasen (CMC) bei 25 °C wurden mittels Oberflächenspannungsmessungen bestimmt. Die CMC nahmen mit zunehmender Kohlenwasserstoffkettenlänge ab. Die CMC erreichte ein Minimum von 5 × 10−5 mol · L−1 (C16-GSBS). Die Grenzflächenspannungen (ITF) zwischen dem Daqing-Rohöl und den Cn-GSBS-Tensiden wurden ebenfalls gemessen. Der Einfluss der Na2CO3- und der Cn-GSBS-Konzentration sowie der Cn-GSBS-Kohlenwasserstoffkettenlänge auf die ITF zwischen dem Rohöl und Wasser wurde im Detail untersucht. Die Ergebnisse zeigen, dass in den wässrigen Tensidsystemen, die die schwachen Base Na2CO3 enthalten, die Öl-Wasser-Grenzflächenspannung bis zu einer Größenordnung von 10−2 mN m−1 reduziert werden kann. Die Resultate zeigen ebenfalls, dass mit zunehmender Tensidkonzentration und Kettenlänge die Grenzflächenspannung deutlich abnimmt, was auf eine gute Grenzflächenaktivität der Cn-GSBS-Tenside hinweist. Diese Tenside sind gut geeignet für den EOR-Prozess mit schwach basischen Tensiden und Polymer.
References
1. Jiang, M. Y., Wang, K. M., Ma, G. P., et al.: Ultraviolet photopolymerization induced by a triazine derivative, J. Appl. Polym. Sci.121 (2011) 2013–2017. 10.1002/app.33774Search in Google Scholar
2. Xie, K. L., Sun, Y. and Hou, A. Q.: Diffusion properties of reactive dyes into net modified cotton cellulose with triazine derivative, J. Appl. Polym. Sci.103 (2007) 2166–2171. 10.1002/app.25097Search in Google Scholar
3. Qiao, W. D., Qiao, W. H., Peng, H, et al.: Synthesis and surface activity properties of symmetric double chains alkylbetaine surfactants derived from s-triazine, Colloids Surf. A: Physicochem. Eng. Asp.405 (2012) 45–50. 10.1016/j.colsurfa.2012.04.034Search in Google Scholar
4. Li, X., Hu, Z. Y., ZhuH.L., et al.: Synthesis and properties of novel alkyl sulfonate Gemini surfactants, J. Surfactants Deterg.13 (2010) 353–359. 10.1007/s11743-010-1188-5Search in Google Scholar
5. Zana, R. and Xia, J. D.: Gemini surfactants: synthesis, interfacial and solution-phase behavior, and applications, in: Surfactant science series, Marcel Dekker Inc., New York, (2004) 117. 10.1016/j.jcis.2003.12.054Search in Google Scholar
6. ZanaR.: Dimeric (Gemini) surfactants: effect of the spacer group on the association behavior in aqueous solution, J. Colloid Interface Sci.248 (2002) 203–220. 10.1006/jcis.2001.8104Search in Google Scholar
7. Zhu, Y. P., Masuyama, A., Kirito, Y., et al.: Preparation and properties of double-or triple-chain surfactants with two sulfonate groups derived from N-Acyldiethanolamines, J. Am. Oil Chem. Soc.68 (1991) 539–543. 10.1007/BF02663831Search in Google Scholar
8. Magdassi, S., Ben Moshe, M., Talmon, Y., et al.: Microemulsions based on anionic Gemini surfactant, Colloids Surf. A: Physicochem. Eng. Asp.212 (2003) 1–7. 10.1016/S0927-7757(02)00294-7Search in Google Scholar
9. Rosen, M. J. and KunjappuJ.T.: Surfactants and Interfacial Phenomena (4th Ed.), John Wiley & Sons Inc., Hoboken, N. J. (2012). 10.1002/9781118228920Search in Google Scholar
10. Yoshimura, T. and Esumi, K.: Synthesis and surface properties of anionic Gemini surfactants with amide groups, J. Colloid Interface Sci.276 (2004) 231–238. 10.1016/j.jcis.2004.03.045Search in Google Scholar PubMed
11. Du, X. G., Lu, Y., Li, L., et al.: Synthesis and unusual properties of novel alkylbenzene sulfonate Gemini surfactants, Colloids Surf. A: Physicochem. Eng. Asp.290 (2006) 132–137. 10.1016/j.colsurfa.2006.05.013Search in Google Scholar
12. Yoshimura, T., Ishihara, K. and Esumi, K.: Sugar-based Gemini surfactants with peptide bonds synthesis, adsorption, micellization, and biodegradability, Langmuir.21 (2005) 10409–10415. 10.1021/la051614qSearch in Google Scholar
13. Petrova-Miladinova, P. and Konstantinova, T. N.: On the synthesis of some reactive triazine azodyes containing tetramethylpiperidine fragment, Dyes Pigm.67 (2005) 63–69. 10.1016/j.dyepig.2004.10.011Search in Google Scholar
14. Konstantinova, T. and Petrova, P.: On the synthesis of some bifunctional reactive triazine dyes, Dyes Pigm.52 (2002) 115–120. 10.1016/S0143-7208(01)00080-8Search in Google Scholar
15. Dong, M. Z., Ma, S. Z. and LiuQ.: Enhanced heavy oil recovery through interfacial instability: A study of chemical flooding for Brintnell heavy oil, Fuel.88 (2009) 1049–1056. 10.1016/j.fuel.2008.11.014Search in Google Scholar
16. Du, X. G., Lu, Y., Li, L., et al.: Synthesis and unusual properties of novel alkylbenzene sulfonate Gemini surfactants, Colloids Surf. A: Physicochem. Eng. Asp.290 (2006) 132–137,. 10.1016/j.colsurfa.2006.05.013Search in Google Scholar
17. Jing, L., Qiao, W., Luo, L., et al.: Design and Surface/Interfacial Properties of Asymmetric Triazine Carboxyl Betaine Surfactants, J. Surfactants Deterg.17 (2014) 629–636. 10.1007/s11743-013-1555-0Search in Google Scholar
18. Xie, Z. F. and Feng, Y. J.: Synthesis and properties of alkylbetaine zwitterionic Gemini surfactants, J. Surfactants Deterg.13 (2010) 51–57. 10.1007/s11743-009-1152-4Search in Google Scholar
19. Salager, J. L., Forgiarini, A. M. and Bullón, J.: How to attain ultralow interfacial tension and three-phase behavior with surfactant formulation for enhanced oil recovery: a review. Part 1. Optimum formulation for simple surfactant–oil–water ternary systems, J. Surfactants Deterg.16 (2013) 449–472. 10.1007/s11743-013-1470-4Search in Google Scholar
20. Xue, C. L., Zhu, H. L., Zhang, T. T., et al.: Synthesis and properties of novel alkylbetaine zwitterionic Gemini surfactants derived from cyanuric chloride, Colloids Surf. A: Physicochem. Eng. Asp.375 (2011) 141–146. 10.1016/j.colsurfa.2010.12.004Search in Google Scholar
21. Florence, T. and Hines, M.: Cosmetic formulation, U.S. Patent 20130209504 A1, 2013.Search in Google Scholar
22. England, D. C. and Berg, J. C.: Transfer of surface-active agents across a liquid-liquid interface, AIChE.17 (1971) 313–322. 10.1002/aic.690170216Search in Google Scholar
© 2016, Carl Hanser Publisher, Munich