Abstract
The micelle formation of N-alkyl-N-methylmorpholinium bromide (CnMMB, n = 12, 14, 16) surfactants in aqueous solution has been investigated. Their critical micelle concentration (CMC), effectiveness and efficiency of the surface tension reduction, and the maximum surface excess concentration were derived from the surface tension curves. Thermodynamic parameters were then evaluated in the temperature range of 25 °C ∼ 45 °C. The results showed that with increasing the alkyl chain length, the CMC values were decreased gradually, which is consistent with the enhancement of hydrophobic effect. Due to the existence of an oxygen atom in the headgroup, an unusual surface activity of CnMMB surfactants was obtained. The obtained results should help to better understand the effect of the hydrophilic headgroup on the micelle behavior of cationic surfactants containing saturated nitrogen-containing heterocycles.
Kurzfassung
Die Mizellenbildung von N-Alkyl-N-methylmorpholiniumbromidtensiden (CnMMB, n = 12, 14, 16) in wässriger Lösung wurde untersucht. Ihre kritische Mizellenbildungskonzentration (CMC), ihre Effektivität und ihre Effizienz bei der Reduktion der Oberflächenspannung und die maximale Oberflächenüberschusskonzentration wurden aus den Oberflächenspannungskurven bestimmt. Anschließend wurden die thermodynamischen Parameter für den Temperaturbereich von 25 °C bis 45 °C ermittelt. Die Ergebnisse zeigten, dass mit zunehmender Alkylkettenlänge die CMC fortschreitend abnahmen, was mit der Verstärkung des hydrophoben Effekts konsistent ist. Aufgrund des Sauerstoffatoms in der Kopfgruppe zeigten die CnMMB-Tenside eine ungewöhnliche Oberflächenaktivität. Die erzielten Ergebnisse sollten helfen, den Einfluss der hydrophilen Kopfgruppe auf das mizellare Verhalten der kationischen Tenside, die Heterozyklen mit gesättigtem Stickstoff enthalten, besser zu verstehen.
References
1. Bijma, K. and Engberts, J. B. F. N.: Effect of Counterions on Properties of Micelles Formed by Alkylpyridinium Surfactants. 1. Conductometry and 1H-NMR Chemical Shifts, Langmuir13 (1997) 4843–4849. 10.1021/la970171qSearch in Google Scholar
2. Singh, K., Marangoni, D. G., Quinn, J. G. and Singer, R. D.: Spontaneous vesicle formation with an ionic liquid amphiphile, J. Colloid Interface Sci.335 (2009) 105–111. 10.1016/j.jcis.2009.03.075Search in Google Scholar PubMed
3. Shi, L. J., Zhao, M. W. and Zheng, L. Q.: Micelle formation by N-alkyl-N-methylpyrrolidinium bromide in ethylammonium nitrate, Colloids Surf. A392 (2011) 305–312. 10.1016/j.colsurfa.2011.09.064Search in Google Scholar
4. Zhao, M. W., Zhao, R. Y., Zheng, L. Q. and Dai, C. L.: Construction of Supramolecular Self-Assembled Microfibers with Fluorescent Properties through a Modified Ionic Self-Assembly (ISA) Strategy, Chem. Eur. J.19 (2013) 1076–1081. 10.1002/chem.201203062Search in Google Scholar PubMed
5. Hao, J. C., Liu, W. M., Xu, G. Y. and Zheng, L. Q.: Vesicles from Salt-Free Cationic and Anionic Surfactant Solutions, Langmuir19 (2003) 10635–10640. 10.1021/la030065qSearch in Google Scholar
6. Akay, G., Hassan-Raeisi, A., Tuncaboylu, D. C., Orakdogen, N., Abdurrahmanoglu, S., Oppermann, W. and Okay, O.: Self-healing hydrogels formed in catanionic surfactant solutions, Soft Matter9 (2013) 2254–2261. 10.1039/C2SM27515ESearch in Google Scholar
7. Shen, Y. W., Hoffmann, H., Jiang, L. H., Lin, H. T., Hao, J. C. and Yang, L.: Lamellar phase formation in catanionic mixtures of hydrogenated and fluorinated surfactants: a comparative study, Colloid Polym Sci.292 (2014) 67–75. 10.1007/s00396-013-3040-8Search in Google Scholar
8. Wang, X. D., Li, Q. T., Chen, X. and Li, Z. H.: Effects of Structure Dissymmetry on Aggregation Behaviors of Quaternary Ammonium Gemini Surfactants in a Protic Ionic Liquid EAN, Langmuir28 (2012) 16547–16554. 10.1021/la304004uSearch in Google Scholar PubMed
9. Gan, L. H., Deen, G. R., Gan, Y. Y. and Chew, C. H.: Synthesis and Properties of Piperazine Derivatives and Their Quaternary Ammonium Amphiphilic Salts, J. Colloid Interface Sci.183 (1996) 329–338. 10.1006/jcis.1996.0554Search in Google Scholar PubMed
10. Zhao, M. W. and Zheng, L. Q.: Micelle formation by N-alkyl-N-methylpyrrolidinium bromide in aqueous solution, Phys. Chem. Chem. Phys.13 (2011) 1332–1337. 10.1039/C0CP00342ESearch in Google Scholar PubMed
11. Zhao, Y. R., Yue, X., Wang, X. D., Huang, D. D. and Chen, X.: Micelle formation by N-alkyl-N-methylpiperidinium bromide ionic liquids in aqueous solution, Colloids Surf. A412 (2012) 90–95. 10.1016/j.colsurfa.2012.07.021Search in Google Scholar
12. Zhang, G. D., Chen, X., Xie, Y. Z., Zhao, Y. R. and Qiu, H. Y.: Lyotropic liquid crystalline phases in a ternary system of 1-hexadecyl-3-methylimidazolium chloride/1-decanol/water, J. Colloid Interface Sci.315 (2007) 601–606. 10.1016/j.jcis.2007.07.012Search in Google Scholar PubMed
13. Sastrya, N. V., Vaghela, N. M. and Aswal, V. K.: Effect of alkyl chain length and head group on surface active and aggregation behavior of ionic liquids in water, Fluid Phase Equilib.327 (2012) 22–29. 10.1016/j.fluid.2012.04.013Search in Google Scholar
14. Li, J., Zhao, M. W. and Zheng, L. Q.: Salt-induced wormlike micelles formed by N-alkyl-N-methylpyrrolidinium bromide in aqueous solution, Colloids Surf. A396 (2012) 16–21. 10.1016/j.colsurfa.2011.12.019Search in Google Scholar
15. Yan, H., Zhao, M. W. and Zheng, L. Q.: A hydrogel formed by cetylpyrrolidinium bromide and sodium salicylate, Colloids Surf. A392 (2011) 205–212. 10.1016/j.colsurfa.2011.09.057Search in Google Scholar
16. Zhao, M. W., Gao, Y. A. and Zheng, L. Q.: Liquid Crystalline Phases of the Amphiphilic Ionic Liquid N-Hexadecyl-N-methylpyrrolidinium Bromide Formed in the Ionic Liquid Ethylammonium Nitrate and in Water, J. Phys. Chem. B114 (2010) 11382–11389. 10.1021/jp103728xSearch in Google Scholar PubMed
17. Zhao, M. W., Yuan, J. and Zheng, L. Q.: Spontaneous formation of vesicles by N-dodecyl-N-methylpyrrolidinium bromide (C12MPB) ionic liquid and sodium dodecyl sulfate (SDS) in aqueous solution, Colloids Surf. A407 (2012) 116–120. 10.1016/j.colsurfa.2012.05.016Search in Google Scholar
18. Zhao, Y. R., Yue, X., Wang, X. D. and Chen, X.: Lyotropic liquid crystalline phases with a series of N-alkyl-N-methylpiperidinium bromides and water, J. Colloid Interface Sci.389 (2013) 199–205. 10.1016/j.jcis.2012.09.032Search in Google Scholar PubMed
19. Luo, H. M., Baker, G. A., Lee, J. S., Pagni, R. M. and Dai, S.: Ultrastable Superbase-Derived Protic Ionic Liquids, J. Phys. Chem. B113 (2009) 4181–4183. 10.1021/jp901312dSearch in Google Scholar PubMed
20. Wu, B., Liu, W. W., Zhang, Y. M. and Wang, H. P.: Do We Understand the Recyclability of Ionic Liquids?Chem. Eur. J.15 (2009) 1804–1810. 10.1002/chem.200801509Search in Google Scholar PubMed
21. Binnemans, K.: Ionic Liquid Crystals, Chem. Rev.105 (2005) 4148–4204. 10.1021/cr0400919Search in Google Scholar PubMed
22. Dupont, J., Souza, R. F. and Suarez, P. A. Z.: Ionic Liquid (Molten Salt) Phase Organometallic Catalysis, Chem. Rev.102 (2002) 3667–3692. 10.1021/cr010338rSearch in Google Scholar PubMed
23. Hardacre, C., Holbrey, J. D., Nieuwenhuyzen, M. and Youngs, T. G. A.: Structure and Solvation in Ionic Liquids, Acc. Chem. Res.40 (2007) 1146–1155. 10.1021/ar700068xSearch in Google Scholar PubMed
24. Greaves, T. L. and Drummond, C. J.: Protic Ionic Liquids: Properties and Applications, Chem. Rev.108 (2008) 206–237. 10.1021/cr068040uSearch in Google Scholar PubMed
25. Lava, K., Binnemans, K. and Cardinaels, T.: Piperidinium, Piperazinium and Morpholinium Ionic Liquid Crystals, J. Phys. Chem. B113 (2009) 9506–9511. 10.1021/jp903667eSearch in Google Scholar PubMed
26. Blesic, M., Lopes, A., Melo, E., Petrovski, Z., Plechkova, N. V., Lopes, J. N. C., Seddon, K. R. and Rebelo, L. P. N.: On the Self-Aggregation and Fluorescence Quenching Aptitude of Surfactant Ionic Liquids, J. Phys. Chem. B112 (2008) 8645–8650. 10.1021/jp802179jSearch in Google Scholar PubMed
27. Rosen, M. J., Cohen, A. W., Dahanayake, M. and Hua, X. Y.: Relationship of structure to properties in surfactants. 10. Surface and thermodynamic properties of 2-dodecyloxypoly(ethenoxyethanol)s, C12H25(OC2H4)xOH, in aqueous solution, J. Phys. Chem.86 (1982) 541–545. 10.1021/j100393a025Search in Google Scholar
28. Rosen, M. J. and Liu, L. T.: Surface activity and premicellar aggregation of some novel diquaternary gemini surfactants, J. Am. Oil. Chem. Soc.73 (1996) 885–890. 10.1007/BF02517990Search in Google Scholar
29. Dong, B., Li, N., Zheng, L. Q., Yu, L. and Inoue, T.: Surface Adsorption and Micelle Formation of Surface Active Ionic Liquids in Aqueous Solution, Langmuir23 (2007) 4178–4182. 10.1021/la0633029Search in Google Scholar PubMed
30. Kamboj, R., Bharmoria, P., Chauhan, V., Singh, S., Kumar, A., Mithu, V. S. and Kang, T. S.: icellization Behavior of Morpholinium-Based Amide-Functionalized Ionic Liquids in Aqueous Media, Langmuir30 (2014) 9920–9930. 10.1021/la501897eSearch in Google Scholar PubMed
31. Rosen, M. J. and Kunjappu, J. T.: (4th Ed.), Surfactants and lnterfacial Phenomena, Wiley, New York (2012) 104, 140. 10.1002/9781118228920Search in Google Scholar
32. Klevens, H. B.: Structure and aggregation in dilate solution of surface active agents, J. Am. Oil. Chem. Soc.30 (1953) 74–80. 10.1007/BF02635002Search in Google Scholar
33. Chamiot, B., Rizzi, C., Gaillon, L., Sirieix-Ple'net, J. and Lelie-vre, J.: Redox-Switched Amphiphilic Ionic Liquid Behavior in Aqueous Solution, Langmuir25 (2009)1311–1315. 10.1021/la803212qSearch in Google Scholar PubMed
34. Ray, G. B., Chakraborty, I., Ghosh, S., Moulik, S. P. and Palepu, R.: Self-Aggregation of Alkyltrimethylammonium Bromides (C10–, C12–, C14–, and C16TAB) and Their Binary Mixtures in Aqueous Medium: A Critical and Comprehensive Assessment of Interfacial Behavior and Bulk Properties with Reference to Two Types of Micelle Formation, Langmuir21 (2005) 10958–10967. 10.1021/la051509gSearch in Google Scholar PubMed
35. Evans, D. F., Allen, M., Ninham, B. W. and Fouda, A.: Critical micelle concentrations for alkyltrimethylammonium bromides in water from 25 to 160°C, J. Solution Chem.13 (1984) 87–101. 10.1007/BF00646042Search in Google Scholar
36. Mesa, C. L.: The temperature dependence of critical micellar concentrations, Colloids Surf.35 (1989) 329–335. 10.1016/0166-6622(89)80305-1Search in Google Scholar
37. Inoue, T., Ebina, H., Dong, B. and Zheng, L. Q.: Electrical conductivity study on micelle formation of long-chain imidazolium ionic liquids in aqueous solution, J. Colloid Interface Sci.314 (2007) 236–241. 10.1016/j.jcis.2007.05.052Search in Google Scholar PubMed
38. Zana, R.: Critical Micellization Concentration of Surfactants in Aqueous Solution and Free Energy of Micellization, Langmuir12 (1996) 1208–1211. 10.1021/la950691qSearch in Google Scholar
© 2016, Carl Hanser Publisher, Munich