Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 7, 2016

Lyotropic Liquid Crystal Formed in Aqueous Lecithin Solutions with IPM and AEO20 Additives

In wässrigen Lecithinlösungen mit IPM- und AEO20-Additiven entstandener lyotroper Flüssigkristall
  • Xuebin Ma , Zhiwen Ye and Zhongni Wang

Abstract

The phase behavior and rheological properties of a lyotropic liquid crystal formed in the lecithin/AEO20/IPM/H2O system were investigated by means of phase diagram, polarized optical microscopy and rheology techniques at 37°C. After adding polyoxyethylene-20-oleyl ether (AEO20) and isopropyl myristate (IPM) to lecithin solutions, an isotropic liquid phase and an anisotropic liquid crystal phase were found. By analyzing the shear viscosity (ηγ=0.1) and yield stress (σ0), with increase in water content, the ηγ=0.1 and σ0 increase firstly and then decrease; with increasing IPM content, a decrease in the ηγ=0.1 and σ0 is observed. Notably, at the relatively higher water content area, the water content has little effect on the ηγ=0.1 and critical stress. When the lecithin/AEO20 mass ratio is 1:2, the liquid crystal phase displays a stronger shear resistance and more stable network structure.

Kurzfassung

Das Phasenverhalten und die rheologischen Eigenschaften des lyotropen Flüssigkristalls, der in dem System Lecithin/AEO20/IPM/H2O erzeugt wurde, wurden mittels des Phasendiagramms, der Polarisationslichtmikroskopie und rheologischer Messungen bei 37°C untersucht. Nach Zugabe von Polyoxyethylen-20-oleylether (AEO20) und Isopropylmyristat (IPM) zu den Lecithinlösungen wurden eine isotrope Flüssigphase und eine anisotrope Flüssigkristallphase gefunden. Durch Analyse der Scherviskosität (ηγ=0.1) und der Fließspannung (σ0) bei steigendem Wasseranteil nahmen ηγ=0.1 und σ0 zunächst zu und fielen dann ab; bei steigendem IPM-Gehalt wurde ein Abfall von ηγ=0.1 und σ0 beobachtet. Speziell in dem Bereich mit relativ höheren Wassergehalten hatte der Wassergehalt kaum Einfluss auf die Scherviskosität (ηγ=0.1) und die Fließspannung (σ0). Wenn das Massenverhältnis von Lecithin zu AEO20 1:2 betrug, besaß die Flüssigkristallphase einen höheren Scherwiderstand und eine stabilere Netzstruktur.


*Correspondence address, Mr. Prof. Zhiwen Ye, School of Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, Jiangsu, China, E-Mail:

Mr. Xuebin Ma, Post graduate in Nanjing University of Science and Technology, School of Chemical Engineering.

Mr. Prof. Zhiwen, Ye, Professor, School of Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, Jiangsu (China),

Mrs. Prof. Zhongni Wang, College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan (China)


References

1. Sampaio, A. R., Palangana, A. J. and Viscovini, R. C.: Investigation of uniaxial and biaxial lyotropic nematic phase transitions by means of digital image processing, Molecular Crystals and Liquid Crystals408 (2004) 4551. 10.1080/15421400490425838Search in Google Scholar

2. Vijayaraghavan, D.: Self-assembled ordering of single-walled carbon nanotubes in a lyotropic liquid crystal system, Journal of Molecular Liquids199 (2014) 128132. 10.1016/j.molliq.2014.08.022Search in Google Scholar

3. Zabara, A. and Mezzenga, R.: Controlling molecular transport and sustained drug release in lipid-based liquid crystalline mesophases, Journal of Controlled Release188 (2014) 3143. 10.1016/j.jconrel.2014.05.052Search in Google Scholar PubMed

4. Landau, E. M., Rummel, G., Cowan-Jacob, S. W. and Rosenbusch, J. P.: Crystallization of a polar protein and small molecules from the aqueous compartment of lipidic cubic phases, J. Phys. Chem. B101 (1997) 19351937. 10.1021/jp963347qSearch in Google Scholar

5. Razumas, V., Larsson, K., Milzis, Y. and Nylander, T.: A cubic monoolein-cytochrome c-water phase: X-ray diffraction, FT-IR, differential scanning calorimetric, and electrochemical studies, J. Phys. Chem.100 (1996) 1176611774. 10.1021/jp952613hSearch in Google Scholar

6. Abbasi, S. and Radi, M.: Food grade microemulsion systems: Canola oil/lecithin:n-propanol/water, Food Chemistry194 (2016) 972979. 10.1016/j.foodchem.2015.08.078Search in Google Scholar PubMed

7. Moreno, E., Schwartz, J., Larrea, E., Conde, I., Font, M., Sanmartin, C., Irache, J. M. and Espuelas, S.: Assessment of β-lapachone loaded in lecithin-chitosan nanoparticles for the topical treatment of cutaneous leishmaniasis in L. major infected BALB/c mice, Nanomedicine: Nanotechnology, Biology, and Medicine11 (2015) 20032012. 10.1016/j.nano.2015.07.011Search in Google Scholar PubMed

8. Lin, C. C., Lin, H. Y., Chen, H. C., Yu, M. W. and Lee, M. H.: Stability and characterization of phospholipid-based curcumin-encapsulated microemulsions, Food Chemistry116 (2009) 923928. 10.1016/j.foodchem.2009.03.052Search in Google Scholar

9. Bergenståhl, B. and Fontell, K.: Phase equilibria in the system soybean lecithin/water, Progress in Colloid & Polymer Science68 (1983) 4852. 10.1007/BFb0114139Search in Google Scholar

10. Angelico, R., Ceglie, A., Olsson, U. and Palazzo, G.: Phase Diagram and Phase Properties of the System Lecithin-Water-Cyclohexane, Langmuir16 (2000) 21242132. 10.1021/la9909190Search in Google Scholar

11. Angelico, R., Ceglie, A., Colafemmina, G., Delfine, F., Olsson, U. and Palazzo, G.: Phase Behavior of the Lecithin/Water/Isooctane and Lecithin/Water/Decane Systems, Langmuir20 (2004) 619631. 10.1021/la035603dSearch in Google Scholar PubMed

12. Ma, X. B., Wang, Z. N., Guo, F. M., Li, Z., Wang, M. and Zhou, W.: phase behavior and rheological properties of concentrated lecithin aqueous solutions with additives, Journal of dispersion and technology34 (2013) 15401547. 10.1080/01932691.2012.752330Search in Google Scholar

13. Partal, P., Kowalski, A. J., Machin, D., Kiratzis, N., Berni, M. G. and Lawrence, C. J.: Rheology and mi-crostructural transitions in the lamellar phase of a cationic surfactant, Langmuir17 (2001) 13311337. 10.1021/la0007731Search in Google Scholar

14. Montalvo, G., Valiente, M. and Khan, A.: Shear-Induced Topology Changes in Liquid Crystals of the Soybean Lecithin/DDAB/Water System, Langmuir23 (2007) 1051810524. 10.1021/la701539fSearch in Google Scholar PubMed

15. Cross, M. M.: Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems, Colloid Sci.20 (1965) 417437. 10.1016/0095-8522(65)90022-XSearch in Google Scholar

16. Li, X. W., Zhang, J., Dong, B., Zheng, L. Q. and Tung, C. H.: Characterization of lyotropic liquid crystals formed in the mixtures of 1-alkyl-3-methylimidazolium bromide/p-xylene/water, Colloid Surf A: Physicochem Eng Aspects335 (2009) 8087. 10.1016/j.colsurfa.2008.10.031Search in Google Scholar

17. Wang, Z. N., Zhao, J., Zhou, W., Wei, X. L. and Tang, X. L.: Lamellar Liquid Crystals Formed in Ternary DEP/Oil/Water Systems, Journal of Dispersion Science and Technology34 (2013) 546552. 10.1080/01932691.2012.667720Search in Google Scholar

18. Stokes, J. R. and Telford, J. H.: Measuring the yield behaviour of structured fluids, Journal of Non-Newtonian Fluid Mechanics124 (2004) 137146. 10.1016/j.jnnfm.2004.09.001Search in Google Scholar

19. Barnes, H. A.: The yield stress – a review or ‘παντα ρ∊ι' – everything flows?Journal of Non-Newtonian Fluid Mechanics81 (1999) 133178. 10.1016/S0377-0257(98)00094-9Search in Google Scholar

20. Nguyen, Q. D. and Boger, D. V.: Measuring the Flow Properties of Yield Stress Fluids, Annual Review of Fluid Mechanics24 (1992) 4788. 10.1146/annurev.fl.24.010192.000403Search in Google Scholar

21. Montalvo, G., Valiente, M. and Rodenas, E.: Rheological Properties of the L Phase and the Hexagonal, Lamellar, and Cubic Liquid Crystals of the CTAB/Benzyl Alcohol/Water System, Langmuir12 (1996) 52025208. 10.1021/la9515682Search in Google Scholar

22. Alfaro, M. C., Guerrero, A. F. and Munoz, J.: Dynamic viscoelasticity and flow behaviour of a polyoxyethylene glycol nonylphenyl ether/toluene/water system, Langmuir16 (2000) 47114719. 10.1021/la9912040Search in Google Scholar

23. Shui, L. L., Guo, P. Z., Chen, F., Xu, G. Y. and ZhengL. Q.: The effect of Iopamidol on rheological properties of monoglyceride/water system, Colloids and Surfaces A: Physicochem. Eng. Aspects256 (2005) 8590. 10.1016/j.colsurfa.2004.09.018Search in Google Scholar

24. Wang, Z. N. and Zhou, W.: Lamellar Liquid Crystals of Brij 97 Aqueous Solutions Containing Different Additives. Solution Chem.38 (2009) 659668. 10.1007/s10953-009-9399-ySearch in Google Scholar

25. Wang, Z. N., Zhou, W. and Li, G. Z.: Ternary cubic phases containing ionic liquid, Colloid Interf Sci.318 (2008) 405410. 10.1016/j.jcis.2007.10.015Search in Google Scholar PubMed

26. Mezzenga, R., Meyer, C., Servais, C., Romoscanu, A. I., Sagalowicz, L. and Hayward, R. C.: Shear rheology of lyotropic liquid crystals: a case study, Langmuir21 (2005) 33223333. 10.1021/la046964bSearch in Google Scholar PubMed

27. Youssry, M., Coppola, L., Nicotera, I. and Morán, C.: Swollen and collapsed lyotropic lamellar rheology Colloid. Interf Sci.321 (2008) 459467. 10.1016/j.jcis.2008.02.023Search in Google Scholar PubMed

Received: 2015-10-09
Accepted: 2016-02-20
Published Online: 2016-11-07
Published in Print: 2016-11-15

© 2016, Carl Hanser Publisher, Munich

Downloaded on 11.12.2023 from https://www.degruyter.com/document/doi/10.3139/113.110468/html
Scroll to top button