Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 7, 2016

Investigation of Phase States, Thermo-Morphologic, Magneto-Morphologic and Refractive Properties of Mesophases in Dodecyltrimethyl Ammonium Bromide – Water Lyotropic Liquid Crystalline System

Untersuchung der Phasenzustände, der thermomorphologischen, der magnetomorphologischen und der Brechungseigenschaften der Mesophasen im lyotropen Flüssigkristallsystem Dodecyltrimethylammoniumbromid/Wasser
  • Arif Nesrullajev and Pınar Özden


We report the phase states in dodecyltrimethyl ammonium bromide/water (DDTMABr–H2O) lyotropic liquid crystalline system. The temperature-concentration phase diagram of this system has been determined. Isotropic micellar L1 phase, nematic-calamitic NC and hexagonal E mesophases have been observed in DDTMABr/H2O system. Dynamics of transformations of magnetically induced textures in NC and E mesophases has been investigated. Temperature and concentration dependences of the refractive index in the L1 phase, NC and E mesophases have been determined. The appearance of the magnetically induced aligned textures of NC mesophase and changes of the optical birefringence vs. time have been investigated.


Wir berichten über die Phasenzustände im lyotropen Flüssigkristallsystem Dodecyltrimethylammoniumbromid/Wasser. Für dieses System wurde das Temperatur-Konzentrations-Phasendiagramm bestimmt. In dem System DDTMABr/H2O-System wurden eine isotrope mizellare L1-Phase, eine nematische-calamitische NC-Phase und hexagonale E-Mesophase beobachtet. Die Umwandlungsdynamik der magnetisch induzierten Strukturen in der NC- und den E-Mesophasen wurde untersucht. Die Temperatur- und Konzentrationsabhängigkeiten des Brechungsindex in der L1-Phase, der NC- und den E-Mesophasen wurden bestimmt. Das Auftreten der magnetisch induzierten und ausgerichteten Strukturen der NC-Mesophase und die Änderungen des optischen Doppelbrechung mit der Zeit wurden untersucht.

*Correspondence address, Prof. Dr. Arif Nesrullajev, Mugla Sitki Kocman University, Faculty of Natural Sciences, Department of Physics, Laboratory of Liquid and Solid Crystals, 48000 Mugla, Turkey, E-Mail:

DSc PhD Arif Nesrullajev is full Professor at Mugla Sitki Kocman University and is currently Head of Department of Physics. He is author and co-author of more than 240 scientific Works in field of Soft Matter Physics, Physics and Application of Liquid crystalline Materials. He obtained “Inventor of USSR” medal and various international and national awards. He worked as a Visiting Professor in Italy, Germany, Russia, Lithuania, Turkey and Hungary.

MSc Pınar Özden is PhD student at Department of Physics of Mugla Sitki Kocman University. She is co-author of some publications, connecting with physics and physical-chemistry of liquid crystals.


1. Mukherjee, P. and Cardinal, J. P.: On micellization processes in aqueous solutions, J. Phys. Chem.78 (1976) 882893. 10.1021/j100602a007Search in Google Scholar

2. Vedenov, A. A.: Physics of Solutions, Science Publ., Moscow (1984).Search in Google Scholar

3. Bartusch, G., Dörfler, H.-G. and Hoffmann, H.: Behavior and properties of lyotropic-nematic and lyotropic-cholesteric phases, Progr. Colloid Polym. Sci.89 (1992) 307. 10.1007/BFb0116336Search in Google Scholar

4. Lingmann, B. and Wennerström, H.: Amphiphile aggregation in aqueous solutions, in: Micelles, Springer-Verlag, Berlin – Heidelberg – New York (1980) 185.Search in Google Scholar

5. Burducea, G.: Lyotropic liquid crystals. I. Specific structures, Rom. Rep. Phys.56 (2004) 6686.Search in Google Scholar

6. Ekwall, P.: Composition, properties and structures of liquid crystalline phases in systems of amphiphilic compounds. In: Brown, G. H. (Ed) Advances in Liquid Crystals, Academic Press, New York/San Francisco/London v. 1 (1975) 1. 10.1016/b978-0-12-025001-1.50007-xSearch in Google Scholar

7. Petrov, A. G.: The Lyotropic State of Matter. Molecular Physics and Living Matter Physics, Gordon & Breach Science Publishers, London – New York (1999).Search in Google Scholar

8. Figueiredo Neto, A. M. and Salinas, S. R. A.: The Physics of Lyotropic Liquid Crystals: Phase Transitions and Structural Properties, Oxford University Press, Oxford (2005). 10.1093/acprof:oso/9780198525509.001.0001Search in Google Scholar

9. Nesrullajev, A.: Lyotropic Liquid Crystals. Amphiphilic Systems, Mugla University Press, Mugla (2007).Search in Google Scholar

10. Ozden, P., Nesrullajev, A. and Oktik, S.: Phase states and thermo-morphologic, thermotropic and magneto-morphologic properties of lyotropic mesophases: sodium lauryl sulphate – water – 1-decanol liquid crystalline system, Phys. Rev. E82 (2010) 061701 (18). 10.1103/PhysRev.E.82.061701Search in Google Scholar

11. Bartolino, R., Meuti, M., Chidichimo, G. and RanieriG.A.: (1985) in: DegiorgioV, CortiM (Eds.) Physics of Amphiphiles: Micelles, Vesicles and Microemulsions, eds., North Holland Press, Amsterdam/Oxford/New York/Tokyo (1985) 524.Search in Google Scholar

12. Nesrullajev, A.: Comparative investigations of phase states, mesomorphic and morphologic properties in hexadecyltrimethyl ammonium bromide/water and hexadecyltrimethyl ammonium bromide/water/1-decanol lyotropic liquid crystalline systems, J. Mol. Liq.200 (2014) 425430. 10.1016/j.molliq.2014.10.036Search in Google Scholar

13. Friberg, S.: Organized solutions: surfactants in science and technology, CRC Press, New York (1992).Search in Google Scholar

14. Angel, M., Hoffmann, H., Löbl, M., Reizlen, K., Thurn, H. and Wunderlich, I.: From rodlike micelles to lyotropic liquid crystals, Progr. Colloid Polym. Sci.69 (1984) 12. 10.1007/BFb0114960Search in Google Scholar

15. Tanford, G.: Theory of micelle formation in aqueous solutions, Journ. Phys. Chem.78 (1974) 2469. 10.1021/j100617a012Search in Google Scholar

16. Mittal, K. L. and Mukerjee, P.: in: Micellization, solubilization and microemulsions, Ed. Mittal, K. L., Plenum Press, New York – London (1979) v.1.Search in Google Scholar

17. Friberg, S.: LyotropicLiquid crystals, Mol. Cryst. Liq. Cryst.40 (1977) 4958. 10.1080/15421407708084470Search in Google Scholar

18. Nesrullajev, A.: Mesomorphism and Electrophysics of Lyotropic Liquid Crystalline Systems, DSc Dissertation, Institute of Physics, Academy of Sciences, Baku (1992).Search in Google Scholar

19. Hertel, G. and Hoffmann, H.: Lyotropic nematic phases of double chain surfactants, Progr Colloid Polym Sci76 (1988) 123131. 10.1007/BFb0114182Search in Google Scholar

20. Hertel, G.: Lyotrope nematische Phasen. Der Zusammenhang zwischen Molekülstruktur und Phasenverhalten. Bayreuth University, Bayreuth. PhD Dissertation (1989).Search in Google Scholar

21. Auvray, X., Petipas, C., Anthore, R., Ricco, I. and LattesA.: X-ray diffraction study of mesophases of cetyltrimethylammonium bromide in water, formamide, and glycerol, J. Phys. Chem.93 (1989) 74587464. 10.1021/j100358a040Search in Google Scholar

22. Wolf, T., Klauβner, B. and Von Binau, G.: Reversible light-induced phase transition in the system cetyltrimethylammonium bromide – water containing a crown-ether-bearing azobenzene, Progr. Colloid Polym. Sci, 83 (1990) 176180. 10.1007/BFb0116257Search in Google Scholar

23. Özden, P. and Nesrullajev, A.: Comparative investigations of the thermotropic and optical refractive properties in micellar isotropic phase and nematic-calamitic mesophase of hexadecyltrimethyl ammonium bromide/water and hexadecyltrimethyl ammonium bromide/water/1-decanol lyotropic liquid crystalline systems, Colloid Polymer Sci.293 (2015) 32953303. 10.1007/s00396-015-3673-xSearch in Google Scholar

24. Cortes, A. B., Valente, M. and Rodenas, E.: Properties of the L and Lyotropic Phases in CTAB/Glycerol/Water and CTAB/Glyceraldehyde/Water Systems, Langmuir15 (1999) 66586603. 10.1021/la9817516Search in Google Scholar

25. Xsu, R., Pank, W., Yu, J., Huo, Q. and J.Chen: Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure, John Wiley & Sons, Singapore (2007).Search in Google Scholar

26. Nativ-Roth, E., Begev, O. and Yerushalmi-Rozen, R.: Shear-induced ordering of micellar arrays in the presence of single-walled carbon nanotubes, Chem. Comm.17 (2008) 20372039. 10.1039/B718148ESearch in Google Scholar

27. Herrington, K. L. and Kaler, E. W.: Phase behavior of aqueous mixtures of dodecyltrimethylammonium bromide and Sodium dodecylsylphate, J. Phys. Chem.97 (1993) 1379213802. 10.1021/j100153a058Search in Google Scholar

28. Khan, A. and MarquesE.: Catanionic surfactants, in Ribb, I. D. (Ed) Specialist Surfactants, Blackie Academic & Professional, London (1998) 3776.Search in Google Scholar

29. Evans, D. F., Allen, M., Ninham, B. W. and Fouda, A.: Critical micelle concentrations for alkyltrimethylammonium bromides in water from 25 to 160°C, J. Sol. Chem.13 (1984) 87. 10.1007/BF00646042Search in Google Scholar

30. Zielinski, R.: Micelle Formation in Aqueous NaBr Solutions of Alkyltrimethylammonium Bromides, Polish J. Chem.72 (1998) 127.Search in Google Scholar

31. Schulz, P. C.: Estructura cristalina de los ácidos n-decano y n-dodecano fosfónicos y de sus sales mono y disódicas, Anales Asoc. Quim. Argentina71 (1983) 271.Search in Google Scholar

32. Mirandi, R. M., Schulz, P. C. and Vuano, B.: Triangular phase dia1 gram of the cationic system dodecyltrimethylammonium bromide-disodium dodecanephosphonate-water, Colloids and Surfaces A197 (2002) 167172. 10.1016/S0927-7757(01)00876-7Search in Google Scholar

33. McGrath, K. M.: Phase behavior of dodecyltrimethylammonium bromide/water mixtures, Langmuir11 (1995) 18351839. 10.1021/la00005a066Search in Google Scholar

34. Zemb, T., Gazeau, D., Dubois, M. and Gulikkrzywicki, T.: Critical behavior of lyotropic liquid crystal, Europhys. Lett.21 (1993) 759766. 10.1209/0295-5075/21/7/008Search in Google Scholar

35. Caria, A. and Khan, A.: Phase behavior of catanionic mixtures: sodium bis(2-ethylhexyl) sulfosuccinate – didodecyldimethylammonium bromide – water system, Langmuir12 (1996) 62826290. 10.1021/la960581zSearch in Google Scholar

36. Schick, M. L.: Effect of Temperature on the Critical Micelle Concentration of Nonionic Detergents. Thermodynamics of Micelle Formation1, J. Phys. Chem.67 (1963) 17961799. 10.1021/j100803a013Search in Google Scholar

37. Brunning, W. and Holtzer, A.: The Effect of Urea on Hydrophobic Bonds: The Critical Micelle Concentration of n-Dodecyltrimethylammonium Bromide in Aqueous Solutions of Urea1, J. Amer. Chem. Soc.83 (1961) 48654866. 10.1021/ja01484a044Search in Google Scholar

38. Voeks, J. F. and Tartar, H. V.: The Electrical Conductance of Aqueous Solutions of Dodecyltrimethylammonium Sulfate at 25', J. Phys. Chem.59 (1955) 11901192. 10.1021/j150534a002Search in Google Scholar

39. Debye, P.: Light Scattering in Soap Solutions, J. Phys. Chem. Colloid Chem.53 (1949) 18. 10.1021/j150466a001Search in Google Scholar

40. Klevens, H. B.: Critical Micelle Concentrations as Determined by Refraction, J. Phys. Chem.52 (1948) 130147. 10.1021/j150457a013Search in Google Scholar

41. Nehring, J. and Saupe, A.: On the schlieren texture in nematic and smectic liquid crystals, J. Chem. Soc., Faraday Trans. 1, 68 (1972) 1. 10.1039/F29726800001Search in Google Scholar

42. Zimmer, J. E., PhD Thesis, Purdue University (1978).Search in Google Scholar

43. White, J. L. and Zimmer, J. E.: Twist disclinations in the carbonaceous mesophase, Carbon16 (1978) 469. 10.1016/0008-6223(78)90094-5Search in Google Scholar

44. Zimmer, J. E. and White, J. L.: Disclination Structures in the Carbonaceous Mesophase, Adv. Liq. Cryst.5 (1982) 157. 10.1016/B978-0-12-025005-9.50011-4Search in Google Scholar

45. Lydon, J.: In: Handbook of Liquid Crystals, Edited by Demus, D., Goodby, J., Gray, G. WSpiess, H.-W. and Vill, V. (Ed), Wiley – VCH, Weinheim (1998) v. IIB, p. 981.Search in Google Scholar

46. Nesrullajev, A.: Peculiarities of inversion walls and singular points in oriented textures of nematic mesophase, Cryst. Res. Techn.44 (2009) 747753. 10.1002/crat.200900134Search in Google Scholar

47. Nesrullajev, A.: Lyotropic nematic mesophases: Peculiarities of singularities and inversion walls in specific and non-specific textures, Optoelectronics and Advanced Materials – Rapid Communications7 (2013) 604610.Search in Google Scholar

48. Scharf, T.: Polarized light in liquid crystals and polymers, Wiley & Sons, London (2007).Search in Google Scholar

49. Kuzma, M. R. and Saupe, A.: in: CollingsPJ, PatelJS (Eds.) Handbook of Liquid Crystal, Oxford University Press, New York/Oxford (1997) 237.Search in Google Scholar

50. Hoffmann, H., Oetter, G. and Schwandner, B.: The aggregation behaviour of tetradecyldimethylaminoxide, Progr. Colloid Polym. Sci.73 (1987) 95106. 10.1007/3-798-50724-4_68Search in Google Scholar

51. Sampaio, A. R., PalanganaA.J. and ViscoviniR.C.: Investigation of Uniaxial and Biaxial Lyotropic Nematic Phase Transitions by Means of Digital İmage Processing, Mol. Cryst. Liq. Cryst.408 (2004) 4551. 10.1080/15421400490425838Search in Google Scholar

52. Nesrullajev, A. and Oktik, S.: Texture Transformations and Orientational Properties of Lyotropic Nematics in Magnetic Field, Cryst. Res. Technol.42 (2007) 4449. 10.1002/crat.200610768Search in Google Scholar

53. Hyde, S. T.: Identification of lyotropic liquid crystalline mesophases, in: Handbook of Applied Surface and Colloid Chemistry, Holmberg, K. (Ed), John Willey & Sons, New York/London (2001) 299332.Search in Google Scholar

54. Ramos, L. and Fabre, P.: Swelling of a lyotropic hexagonal phase by monitoring the radius of the cylinders, Langmuir13 (1997) 682686. 10.1021/Ia9607060Search in Google Scholar

55. Stegmeyer, H.: Liquid Crystals, Springer Verlag, Berlin/Heidelberg (2013). 10.1080/1358314X.2013.860680Search in Google Scholar

56. Tanford, C.: Theory of micelle formation in aqueous solution, J. Phys. Chem.78 (1974) 24692479. 10.1021/j100617a012Search in Google Scholar

57. Winsor, P. A.: Binary and multicomponent solutions of amphiphile compopunds. Solubilization and formation, structure and theoretical significance of liquid crystalline solutions, Chem. Rev.68 (1968) 140. 10.1021/cr60251a001Search in Google Scholar

58. Sonin, A. S.: Lyotropic nematics, Sov Phys Usp30 (1987) 875912. 10.1070/PU1987v030n10ABEH002967Search in Google Scholar

59. Kuzma, M. R.: Nonequilibrium periodic structures induced by rotating and static fields in a lyotropic nematic liquid crystal, Phys. Rev. Lett.57 (1986) 349352. 10.1103/PhysRevLett.57.349Search in Google Scholar PubMed

60. de Gennes, P. G. and Prost, J.: The Physics of Liquid Crystals, Clarendon Press, Oxford – London (1992).Search in Google Scholar

61. Sonin, A. S.: Introduction to the Physics of Liquid Crystals, Science Publ., Moscow (1984).Search in Google Scholar

62. Dierking, I.: Textures of Liquid Crystals, Wiley – VCH, Weinheim (2003). 10.1002/3527602054Search in Google Scholar

63. Nesrullajev, A. and Avci, N.: Oriented and non-oriented textures of nematic liquid crystals: omparative peculiarities of the thermotropic behavior, Mater. Cham. Phys.131 (2011) 455461. 10.1016/j.matchemphys.2011.10.004Search in Google Scholar

64. Nesrullajev, A., Bilgin Eran, B., Singer, D., Kazanci, N. and Praefcke, K.: Morphology, surface-induced orientational properties and phase transition peculiarities of lyotropic nematic mesophases in pentadecane solutions of tetranuclear platinum mesogens, Mater. Res. Bull.37 (2002) 24672482. 10.1016/S0025-5408(02)00893-0Search in Google Scholar

65. Hendrikx, Y. and Charvolin, J.: Structural relations between lyotropic phases in the vicinity of the nematic phases, J. de Phys.42 (1981) 1427. 10.1051/jphys:0198100420100142700Search in Google Scholar

66. Bartolino, R., Chiaranza, T., Meuti, M. and Compagnoni, R.: Uniaxial and biaxial lyotropic nematic liquid crystals, Phys. Rev. A26 (1982) 1116. 10.1103/PhysRevA.26.1116Search in Google Scholar

67. Quist, P.-O., Halle, B. and Furo, I.: Micelle size and order in lyotropic nematic phases from nuclear spin relaxation, J. Phys. Chem.96 (1992) 3875. 10.1063/1.461892Search in Google Scholar

68. Furo, I. and Halle, B.: Micelle size and orientational order across the nematic-isotropic transition: A field-dependent nuclear-spin-relaxation study, Phys. Rev. E51 (1995) 466. 10.1103/PhysRevE.51.466Search in Google Scholar PubMed

69. Quist, P.-O.: First order transitions to a lyotropic biaxial nematic, Liq. Cryst.18 (1995) 623. 10.1080/02678299508036666Search in Google Scholar

70. L.Vicari (ed.), Optical Applications of Liquid Crystals, Taylor & Francis, London, (2003).10.1887/0750308575Search in Google Scholar

71. Yeh, P. and Gu, C.: Optics of Liquid Crystal Displays, Wiley – Interscience, New York (1999).Search in Google Scholar

72. Pan, R.-P., Tsai, T.-R., Chen, C.-Y., Wang, C.-H. and Pan, C.-L.: The refractive indices of nematic liquid crystal 4'-n-pentyl-4-cyanobiphenyl in the THz frequency range, Mol. Cryst. Liq. Cryst.409 (2004) 137144. 10.1080/15421400490431039Search in Google Scholar

73. Mitra, M., Gupta, S. and Paul, R.: Determination of orientational order parameter from optical studies for a homologous series of mesomorphic compounds, Mo. Cryst. Liq. Cryst.199 (1991) 257266. 10.1080/00268949108030937Search in Google Scholar

74. Kumar, A.: Determination of orientational order and effective geometry parameter from refractive indices of some nematics, Liq. Cryst.40 (2014) 503510. 10.1080/02678292.2012.761355Search in Google Scholar

Received: 2016-06-10
Accepted: 2016-07-08
Published Online: 2016-11-07
Published in Print: 2016-11-15

© 2016, Carl Hanser Publisher, Munich

Downloaded on 2.12.2023 from
Scroll to top button