Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 7, 2016

Flotation Selectivity of Novel Alkyl Dicarboxylate Reagents for Calcite-Fluorite Separation

Selektivität der Flotation bei der Trennung von Calcit und Fluorit mit neuen Alkyldicarboxilaten
  • Tommy Karlkvist , Anuttam Patra , Romain Bordes , Krister Holmberg and Kota Hanumantha Rao


A series of amino acid-based surfactants with a fixed alkyl chain length and with two carboxyl groups separated by a spacer of one, two or three carbon atoms have been synthesized and evaluated as potential collectors for flotation of calcite and fluorite. A monocarboxylate amino acid-based surfactant having the same length of the hydrocarbon tail was also included for comparison in the study. Experiments using a Hallimond flotation tube showed that although the flotation reagents solely differ in terms of spacer, their efficacy in terms of flotation recovery varied very much. Whereas on calcite at pH 10.5 only the monocarboxylate collector gave a high yield, on fluorite at the same pH both the monocarboxylate and the dicarboxylate collectors with one carbon between the carboxyl groups gave good results. On calcite at the natural pH the monocarboxylate collector was most efficient but the dicarboxylate collectors with a two- and a three-carbon spacer also gave a reasonable recovery. On fluorite at the natural pH the dicarboxylate collectors with a two- and a three-carbon spacer were most efficient. The ζ-potential and the flotation recovery of the mineral particles as a function of added collector were assessed and the adsorption was also monitored by diffuse reflectance infra-red spectroscopy. Taken together, the results showed that small changes in the head group region of the collector can radically affect flotation recovery. This type of knowledge is important to understand flotation selectivity in a mixture of similar minerals.


Es wurde eine Reihe Aminosäurenbasierter Tenside synthetisiert und als potenzielle Kollektoren für die Flotation von Calcit und Fluorit bewertet. Die Tenside besitzen eine konstante Alkylkettenlänge und zwei Carboxylgruppen, die durch einen Spacer, der ein, zwei oder drei Kohlenstoffatome enthalten kann, getrennt sind. Ein Monocarboxilataminosäuretensid mit der gleichen Kohlenstoffkettenlänge wurde als Vergleichssubstanz in die Untersuchung einbezogen. Experimente in der Hallimond-Flotationsröhre ergaben, dass, obwohl die Flotationsreagenzien sich ausschließlich in Bezug auf die Spacer voneinander unterschieden, deren Wirksamkeit im Hinblick auf die Flotationsanreicherung sich sehr stark veränderte. Während auf Calcit bei pH 10,5 nur der Monocarboxilatsammler eine hohe Ausbeute lieferte, zeigten auf Fluorit beim gleichen pH sowohl der Monocarboxilat- als auch der Dicarboxilatsammler, dessen Spacer zwischen den Carboxylgruppen nur ein Kohlenstoffatom hatte, gute Ergebnisse. Auf Calcit beim natürlichen pH-Wert war der Monocarboxilatkollektor der effizienteste, aber die Dicarboxilatkollektoren mit einem Spacer, der zwei- bzw. drei Kohlenstoffatome enthielt, gab auch eine annehmbare Anreicherung. Dicarboxilatkollektoren mit einem zwei- oder einem drei Kohlenstoffatome enthaltenen Spacer waren auf Fluorit beim natürlichen pH die effizientesten. Das ζ-Potential und die Flotationsanreicherung der Mineralpartikel als Funktion des zugegebenen Kollektors wurden bewertet. Die Adsorption wurde durch diffuse Reflexionsspektroskopie (DRIFTS) überwacht. Zusammengefasst zeigten die Ergebnisse, dass kleine Änderungen in dem Kopfgruppenbereich des Kollektors die Flotationsanreicherung drastisch beeinflussen können. Diese Erkenntnis ist für das Verständnis der Flotationsselektivität in einer Mischung ähnlicher Mineralien von Bedeutung.

*Correspondence address, Mr. Dr. Tommy Karlkvist, Minerals and Metals Research Laboratory (MiMeR), Luleå University of Technology, SE-971 87 Luleå, Sweden, Tel.: +46(0)920491765, Fax: +46(0)92097364, E-Mail:


1. Wills, B. A.: Wills' Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery. 7th ed.Elsevier Ltd.; 2006.10.1016/B978-075064450-1/50003-5Search in Google Scholar

2. Fuerstenau, D.: Where we are in flotation chemistry after 70 years of research. Proc XIX Int Miner Process Congr 1995.Search in Google Scholar

3. Pearse, M. J.: An overview of the use of chemical reagents in mineral processing. Miner. Eng.18 (2005) 13949. 10.1016/j.mineng.2004.09.015Search in Google Scholar

4. Pradip: Reagents design and development for the mineral processing industry: Scientific challenges and engineering issues. Met. Mater. Process. 10 (1998) 4154.Search in Google Scholar

5. Read, A. D. and Hollick, C. T.: Selective flocculation techniques for recovery of fine particles. Min. Sci. Eng.8 (1976) 20213.Search in Google Scholar

6. Singh, D. V., Baldauf, H. and Schubert, H.: Flotation of Cassiterite Ores with Alkane Dicarboxylic Acids and Organic Depressants. Aufbereitungs-Technik21 (1980) 56678.Search in Google Scholar

7. Marabini, A. M., Ciriachi, M., Plescia, P. and Barbaro, M.: Chelating reagents for flotation. Miner. Eng.20 (2007) 101425. 10.1016/j.mineng.2007.03.012Search in Google Scholar

8. Butcher, A. R.: A practical guide to some aspects of mineralogy that affect flotation. In: Christopher J.Greet, editor. Flotat. Plant Optim., Australasian Institute of Mining and Metallurgy; 2010, p. 8393.Search in Google Scholar

9. Rao, K. H. and Forssberg, K. S. E.: Selectivity in Froth Flotation Based on Molecular Recognition at Inorganic Interfaces. Konf. i Miner. 14–16 Febr., Luleå: 1995, p. 5366.Search in Google Scholar

10. Lu, S., Song, Z. and Sun, C.: Review on some research methods of mineral crystal chemistry and computer simulation on flotation. XXV Int. Miner. Process. Congr.4 (2010) 326975.Search in Google Scholar

11. Rai, B.: Molecular Modeling for the Design of Novel Performance Chemicals and Materials. Boca Raton: CRC Press; 2012. 10.1201/b11590Search in Google Scholar

12. Mann, S.: Molecular recognition in biomineralization. Nature332 (1988) 11924. 10.1038/332119a0Search in Google Scholar

13. Pradip Rai, B., Rao, T. K., Krishnamurthy, S., Vetrivel, R., Mielczarski, J.: Molecular modeling of interactions of diphosphonic acid based surfactants with calcium minerals. Langmuir18 (2002) 93240. 10.1021/la010625qSearch in Google Scholar

14. Mann, S.: Biomineralization and biomimetic materials chemistry. J. Mater. Chem.5 (1995) 935. 10.1039/jm9950500935Search in Google Scholar

15. Grases, F., Garcia-Raso, A., Palou, J., Costa-Bauza, A. and March, J. G.: A study of the relationship between the chemical structure of some carboxylic acids and their capacity to inhibit the crystal growth of calcium fluoride. Colloids and Surfaces54 (1991) 3139. 10.1016/0166-6622(91)80069-ZSearch in Google Scholar

16. Heywood, B. R. and Mann, S.: Crystal recognition at inorganic–organic interfaces: Nucleation and growth of oriented BaSO4 under Compressed Langmuir Monolayers. Adv. Mater.4 (1992) 278282. 10.1002/adma.19920040407Search in Google Scholar

17. Mann, S., Didymus, J. M., Sanderson, N. P., Heywood, B. R. and Samper, E. J. A.: Morphological influence of functionalized and non-functionalized α,ω-dicarboxylates on calcite crystallization. J. Chem. Soc. Faraday Trans.86 (1990) 1873. 10.1039/ft9908601873Search in Google Scholar

18. Mann, S., Heywood, B. R., Rajam, S. and Birchall, J. D.: Controlled crystallization of CaCO3 under stearic acid monolayers. Nature334 (1988) 692695. 10.1038/334692a0Search in Google Scholar

19. Heywood, B. R. and Mann, S.: Template-directed inorganic crystallization: oriented nucleation of barium sulfate under Langmuir monolayers of an aliphatic long chain phosphonate. Langmuir8 (1992) 14928. 10.1021/la00041a041Search in Google Scholar

20. Finkelstein, N. P.: Review of interactions in flotation of sparingly soluble calcium minerals with anionic collectors. Trans. Inst. Min. Metall. Sect. C Miner. Process Extr. Metall.98 (1989) 15777.Search in Google Scholar

21. Hanna, H. S. and Somasundaran, P.: Flotation of Salt-Type Minerals. Flotat. – A. M. Gaudin Meml. Vol. – Vol. 1, SME; 1976, p. 197272.Search in Google Scholar

22. Hanumantha, R. K. and Forssberg, K. S. E.: Mechanism of fatty acid adsorption in salt-type mineral flotation. Miner. Eng.4 (1991) 879890. 10.1016/0892-6875(91)90071-3Search in Google Scholar

23. Pugh, R. and Stenius, P.: Solution chemistry studies and flotation behaviour of apatite, calcite and fluorite minerals with sodium oleate collector. Int. J. Miner. Process.15 (1985) 193218. 10.1016/0301-7516(85)90035-3Search in Google Scholar

24. Amankonah, J. O., Somasundaran, P. and Ananthapadmabhan, K. P.: Effects of dissolved mineral species on the dissolution/precipitation characteristics of calcite and apatite. Colloids and Surfaces15 (1985) 295307. 10.1016/0166-6622(85)80080-9Search in Google Scholar

25. Baldauf, H., Schubert, H. and Kramer, W.: N-acylamino carboxylic acids – collectors for the flotation separation of fluorite and calcite. Aufbereitungs-Technik27 (1986) 23541.Search in Google Scholar

26. Bordes, R. and Holmberg, K.: Physical chemical characteristics of dicarboxylic amino acid-based surfactants. Colloids Surfaces A Physicochem. Eng. Asp.391 (2011) 3241. 10.1016/j.colsurfa.2011.03.023Search in Google Scholar

27. Karlkvist, T., Patra, A., Rao, K. H., Bordes, R. and Holmberg, K.: Flotation selectivity of novel alkyl dicarboxylate reagents for apatite–calcite separation. J. Colloid. Interface Sci.445 (2015) 4047. 10.1016/j.jcis.2014.11.072Search in Google Scholar PubMed

28. Ulman, A.: Formation and Structure of Self-Assembled Monolayers. Chem. Rev.86 (1996) 153354. 10.1021/cr9502357Search in Google Scholar PubMed

29. Bordes, R., Tropsch, J. and Holmberg, K.: Counterion specificity of surfactants based on dicarboxylic amino acids. J. Colloid. Interface. Sci.338 (2009) 52936. 10.1016/j.jcis.2009.06.032Search in Google Scholar PubMed

30. Fa, K., Jiang, T., Nalaskowski, J. and Miller, J.: Interaction forces between a calcium dioleate sphere and calcite/fluorite surfaces and their significance in flotation. Langmuir1 (2003) 1052330. 10.1021/la035335jSearch in Google Scholar

31. Rao, S. R.: Surface Chemistry of Froth Flotation. 2nd ed.New York: Kluwer Academic/Plenum Publishers; 2004. 10.1007/978-1-4419-9124-9Search in Google Scholar

Received: 2016-04-13
Accepted: 2016-05-17
Published Online: 2016-11-07
Published in Print: 2016-11-15

© 2016, Carl Hanser Publisher, Munich

Downloaded on 8.12.2023 from
Scroll to top button