Accessible Requires Authentication Published by De Gruyter November 13, 2017

Extraction of Natural Surfactant Saponin from Soapnut (Sapindus mukorossi) and its Utilization in the Remediation of Hexavalent Chromium from Contaminated Water

Extraktion des natürlichen Tensids Saponin aus Waschnüssen (Sapindus mukorossi) und dessen Verwendung bei der Aufbereitung von sechswertigem Chrom aus kontaminiertem Wasser
Monohar Hossain Mondal, Susanta Malik, Amit Garain, Sangita Mandal and Bidyut Saha

Abstract

In this study optimization of extraction conditions for saponin from soapnut (Sapindus mukorossi) has been investigated. This investigation showed that a better extraction of saponin can be achieved with increasing the dielectric constant of solvent employed. The best yield was attained in a 50% v/v aqueous ethanol medium. Another objective of the present study is to assess the thermodynamics of the uptake-reduction of hexavalent chromium in contaminated water samples using saponin. Pyrene has been employed to determine the critical micellar concentration (CMC) (in the UV-vis method of determination) of saponin as a spectroscopic probe. Thus, the effectiveness of the bio-surfactant as a self-motivated adsorbent for hexavalent chromium is investigated. Several physico-chemical parameters like contact time, sorbate concentration, pH and temperature have been determined. The findings of the investigation invoked a very efficient uptake of 213.48 mg g−1 of hexavalent chromium from the contaminated water sample at a lower value of pH 2 and temperature 35°C. It is observed that the method followed a pseudo-first order kinetics, where the evaluated ΔG0 has supported the sorption as a feasible and spontaneous process. The HR-MS, FTIR, steady state Fluorescence spectroscopy, HR-TEM and UV-Vis spectroscopy have been employed for the current scientific studies.

Kurzfassung

In dieser Studie wurde die Optimierung der Extraktionsbedingungen für Saponin aus Waschmüssen (Sapindus mukorossi) untersucht. Diese Untersuchung zeigte, dass sich Saponin mit zunehmender Dielektrizitätskonstante des eingesetzten Lösungsmittels besser extrahieren ließ. Die höchste Ausbeute wurde in einem wässrigen Ethanolmedium (50% v/v) erreicht. Ein weiteres Ziel der gegenwärtigen Studie ist es, die Thermodynamik der Entfernung von sechswertigem Chrom aus kontaminierten Wasserproben mit Saponin zu beurteilen. Pyren wurde als spektroskopische Sonde verwendet, um die kritische Mizellenbildungskonzentration (CMC) (mit der UV-Vis-Bestimmungsmethode) von Saponin zu bestimmen. Die Wirksamkeit des Biotensids als selbsttätiges Adsorptionsmittel für sechswertiges Chrom wird damit untersucht. Es wurden mehrere physikalisch-chemische Parameter wie Kontaktzeit, Sorbatkonzentration, pH und Temperatur bestimmt. Die Ergebnisse der Untersuchung zeigten eine sehr effiziente Aufbereitung von 213,48 mg g–1 sechswertigem Chrom aus der kontaminierten Wasserprobe bei einem niedrigeren pH-Wert von 2 und einer Temperatur von 35°C. Es wird beobachtet, dass die Methode einer Kinetik pseudo-erster Ordnung folgt, wobei die bestimmte freie Sorptions-Energie ΔG0 einen durchführbaren und spontanen Prozess anzeigt. Für die aktuellen wissenschaftlichen Studien wurden die Methoden HR-MS, FTIR, stationäre Fluoreszenzspektroskopie, HR-TEM- und UV-Vis-Spektroskopie eingesetzt.


Monohar Hossain Mondal was born in kalna, Burdwan in 1991. He has completed his M. Sc. degree from The University of Burdwan in 2013 and received UGC-NET JRF in the same year. After completing one year as JRF at the Bioremediation Laboratory (The University of Burdwan), he has been appointed as WBES Officer by the Government of West Bengal and presently working as Assistant Professor in Chemistry at Govt. General Degree College at Singur, Hooghly, WB, India.

Susanta Malik was born in Kalna, Burdwan in 1988. He has completed his M. Sc. degree from The University of Burdwan in 2011 after receiving the UGC-RGNF fellowship in 2012, He is currently working on Surfactant Chemistry as a senior member of the Homogeneous Catalysis Laboratory (The University of Burdwan).

Amit Garain was born in Birbhum, India in 1995. He is currently working as a JRF in the department of chemistry Jadavpur University, WB, India.

Sangita Mandal was born in Bankura, India in 1991. She is a current JRF at Homogeneous Catalysis Laboratory, The University of Burdwan, WB, India.

Bidyut Saha was born in Birbhum, WB, India in 1975. He obtained his Ph. D. degree from Visva Bharati University, India in 2007. He was a visiting scientist between 2009 – 2010 in the Department of Chemistry, UBC, Vancouver, Canada. Dr Saha is presently working as an Associate Professor in the Department of Chemistry, The University of Burdwan, India. His area of interests is bioremediation of toxic metals, micellar catalysis and inorganic reaction mechanisms. He has published 80 papers in international journals.

*Correspondence address, Prof. Dr. Bidyut Saha, Bioremediation Laboratory, Department of Chemistry, The University of Burdwan, 713104, WB, India, Tel.: +91-342-2533913 (Office), Mobile: +91-9476341691, Fax: +91-342-2530452(Office), E-Mail:

References

1. Suhagia, B. N., Rathod, I. S. and Sindhu, S.: Sapindus mukorossi(areetha): An OverviewIJPSR2 (2011) 19051913. 10.13040/IJPSR.0975-8232.2(8).1905-13 Search in Google Scholar

2. Saxena, D., Pal, R., Dwivedi, A. K. and Singh, S.: Characterization of sapindosides in Sapindus mukorossi saponin (Reetha saponin) and quantitative determination of sapindoside B J. Sci. Ind. Res.63 (2004) 181186. Search in Google Scholar

3. Garg, S., Doncel, G. and Chabra, S.: Synergistic spermicidal activity of neem seed extract, reetha saponins and quinine hydrochloride Contraception50 (1994) 185190. 10.1016/0010-7824(94)90054-X Search in Google Scholar

4. Piorkowski, D. T. and McClements, D. J.: Beverage emulsions: Recent developments in formulation, production, and applicationsFood Hydrocolloids42 (2014) 541. 10.1016/j.foodhyd.2013.07.009 Search in Google Scholar

5. Yang, Y., Leser, M. E., Sher, A. A. and McClements, D. J.: Formation and stability of emulsions using a natural small molecule surfactant: Quillaja saponin (Q-Naturale®)Food Hydrocolloids30 (2013) 589596. 10.1016/j.foodhyd.2012.08.008 Search in Google Scholar

6. Lippard, S. J. and Berg, J. M.: Principals Of Bioinorganic Chemistry, (University Science Books) 1994, p. 41. Search in Google Scholar

7. Das, A. K.: Bioinorganic Chemistry, (BOOK AND ALLIED (P) LTD.) 2015, p. 23. Search in Google Scholar

8. Saha, R., Nandi, R. and Saha, B.: Sources and toxicity of hexavalent chromium J. Coord. Chem.64 (2011) 17821806. 10.1080/00958972.2011.583646 Search in Google Scholar

9. US Department of Health and Human Services, Toxicological Profile for Chromium. Public Health Services Agency for toxic substances and Diseases Registry, Washington, DC, 1991. Search in Google Scholar

10. Saha, B. and Orving, C.: Biosorbents for Hexavalent Chromium Elimination From Industrial and Municipal Effluents Coord. Chem. Rev.254 (2010) 29592972. 10.1016/j.ccr.2010.06.005 Search in Google Scholar

11. Kalidhasan, S., Kumara, A. S. K., Rajesh, V. and Rajesh, N.: The journey traversed in the remediation of hexavalent chromium and the road ahead toward greener alternatives – A perspective Coord. Chem. Rev.317 (2016) 157166. 10.1016/j.ccr.2016.03.004 Search in Google Scholar

12. Kumar, A. S. K., Kumar, C. U., Rajesh, V. and Rajesh, N.: Microwave Assisted Preparation of N-Butylacrylate Grafted Chitosan and Its Application for Cr(VI) Adsorption Int. J. Biol. Macromolec.66 (2014) 135143. 2453032510.1016/j.ijbiomac.2014.02.007 Search in Google Scholar

13. Acar, F. N. and Malkoc, E.: The removal of chromium(VI) from aqueous solutions by Fagus orientalis LBioresources Technol. 94 (2004) 1315. 10.1016/j.biortech.2003.10.032 Search in Google Scholar

14. Chakrabati, S., Chaudhuri, B., Bhattacharjee, S., Ray, A. K. and Dutta, B. K.: Photo-reduction of hexavalent chromium in aqueous solution in the presence of zinc oxide as semiconductor catalyst Chem. Eng. J.153 (2009) 8693. 10.1016/j.cej.2009.06.021 Search in Google Scholar

15. Mitra, P., Sarkar, D., Chakrabarti, S. and Dutta, B.K.: Reduction of hexa-valent chromium with zero-valent iron: batch kinetic studies and rate model Chem. Eng. J.171 (2011) 5460. 10.1016/j.cej.2011.03.037 Search in Google Scholar

16. Haight, G. P., Perchonock, E., Emmenegger, F. and Gordon, G.: The Mechanism of the Oxidation of Sulfur(IV) by Chromium (VI) in Acid Solution1 J. Am. Chem. Soc.87 (1965) 38354030. 10.1021/ja01095a700 Search in Google Scholar

17. Hickey, C. W.: Sensitivity of four New Zealand cladoceran species and Daphnia magna to aquatic toxicants. N.Z. J. Mar. Freshw. Res. 23 (1989) 131137. 10.1080/00288330.1989.9516348 Search in Google Scholar

18. Dubey, S., Gusain, D. and Sharma, Y. C.: Kinetic and isotherm parameter determination for the removal of chromium from aqueous solutions by nanoalumina, a nanoadsorbent J. Mol. Liq.219 (2016) 18. 10.1016/j.molliq.2016.01.021 Search in Google Scholar

19. Olmetz, T.: The optimization of Cr (VI) reduction and removal by electrocoagulation using response surface methodologyJ. Hazard. Mater.162 (2009) 13711378. 1864077610.1016/j.jhazmat.2008.06.017 Search in Google Scholar

20. Pettine, M., Tonnina, D. and Millero, F. J.: Chromium(VI) reduction by sulphur(IV) in aqueous solutions Mar. Chem.99 (2006) 3141. 10.1016/j.marchem.2005.02.003 Search in Google Scholar

21. Rivero-Huguet, M. and Marshall, W. D.: Influence of various organic molecules on the reduction of hexavalent chromium mediated by zero-valent ironChemosphere75 (2009) 12401248. 1955946010.1016/j.chemosphere.2009.05.040 Search in Google Scholar

22. Sahu, S. K., Meshram, P., Pandey, B. D., Kumar, V. and Mankhand, T. R.: Removal of chromium (III) by cation exchange resin, Indion 790 for tannery waste treatmentHydrometallurgy99 (2009) 170174. 10.1016/j.hydromet.2009.08.002 Search in Google Scholar

23. Wazne, M., Jagupila, S. C., Moon, D. H., Jagupila, S. C., Christodoulatos, C. and Kim, M. G.: Assessment of calcium polysulfide for the remediation of hexavalent chromium in chromite ore processing residue (COPR) J. Hazard. Mater.143 (2007) 620628. 1727659710.1016/j.jhazmat.2007.01.012 Search in Google Scholar

24. Ravikumar, K. V. G., Kumar, D., Kumar, G., Mrudula, P., Natarajan, C. and Mukherjee, A.: Ind. Eng. Chem. Res.55 (2016) 59735982. 10.1021/acs.iecr.6b01006 Search in Google Scholar

25. Hasin, A. A., Gurman, S. J., Murphy, L. M., Perry, A., Smith, T. J. and Gardiner, P. H. E.: Remediation of chromium (VI) by a methane-oxidizing bacterium. Environ. Sci. Technol.44 (2010) 400405. 2003975310.1021/es901723c Search in Google Scholar

26. Ghosh, A., Saha, R. and Saha, B.: Suitable combination of promoter and micellar catalyst for kilo fold rate acceleration on propanol to propionaldehyde conversion in aqueous media J. Ind. Eng. Chem.20 (2014) 345355. 10.1016/j.jiec.2013.03.028 Search in Google Scholar

27. Sar, P., Ghosh, A., Malik, S., Ray, D., Das, B. and Saha, B.: Selective heteroaromatic nitrogen base promoted chromium (VI) oxidation of isomeric pentanols in aqueous micellar media at room temperature J. Ind. Eng. Chem.42 (2016) 5362. 10.1016/j.jiec.2016.07.028 Search in Google Scholar

28. Mondal, M. H., Malik, S., Roy, A., Saha, R. and Saha, B.: Modernization of surfactant chemistry in the age of gemini and bio-surfactants: a reviewRSC Adv.5 (2015) 9270792718. 10.1039/C5RA18462B Search in Google Scholar

29. Mukherjee, K., Nandi, R., Saha, D. and Saha, B.: Surfactant-assisted enhancement of bioremediation rate for hexavalent chromium by water extract of Sajina (Moringa oleifera) flower Des. Water Treat.53 (2015) 746751. 10.1080/19443994.2013.842503 Search in Google Scholar

30. Mukherjee, K., Saha, R., Ghosh, A., Ghosh, S. K., Maji, P. K. and Saha, B.: Surfactant-assisted bioremediation of hexavalent chromium by use of an aqueous extract of sugarcane bagasseRes Chem Intermed.40 (2014) 17271734. 10.1007/s11164-013-1077-4 Search in Google Scholar

31. Mukherjee, K., Saha, R., Ghosh, A. and Saha, B.: Chromium removal technologies, Res Chem Intermed.39 (2013) 22672286. 10.1007/s11164-012-0779-3 Search in Google Scholar

32. Saha, R., Mukherjee, K., Saha, I., Ghosh, A., Ghosh, S. K. and Saha, B.: Removal of hexavalent chromium from water by adsorption on mosambi (Citrus limetta) peelRes Chem Intermed.39 (2013) 22452257. 10.1007/s11164-012-0754-z Search in Google Scholar

33. Huang, H. C., Liao, S. C., Kuo, Y. H., Chang, F. R. and Wu, Y. C.: Molluscicidal Saponins from Sapindus mukorossi, Inhibitory Agents of Golden Apple Snails, Pomacea canaliculataJ. Agric. Food Chem.51 (2003) 49164919. 1290394510.1021/jf0301910 Search in Google Scholar

34. Armarego, W. L. F. and Perrin, D. D.: Purification of Laboratory Chemicals. Butterworth-Heinemann: Oxford, 1997, p. 523. Search in Google Scholar

35. Ghai, R., Satpute, S. K., Chopade, B. A. and Banpurkar, A. G.: Study of functional properties of Sapindus mukorossi as a potential bio-surfactant Indian J. Sci. Technol.4 (2011) 530533. Search in Google Scholar

36. Hiai, S., Oura, H. and Hakajima, T.: Color reaction of some sapogenins and saponins with vanillin and sulfuric acidPlanta Medica29 (1976) 116122. 94850910.1055/s-0028-1097639 Search in Google Scholar

37. Balakrishnan, S., Varughese, S. and Deshpande, A. P.: Micellar characterization of saponin from Sapindus Mukorossi Tenside Surf. Det.43 (2006) 262268. 10.3139/113.100315 Search in Google Scholar

38. Hait, S. K., Majhi, P. R., Blume, A. and Moulik, S. P.: A Critical Assessment of Micellization of Sodium Dodecyl Benzene Sulfonate (SDBS) and Its Interaction with Poly(vinyl pyrrolidone) and Hydrophobically Modified Polymers, JR 400 and LM 200J. Phys. Chem. B.107 (2003) 36503658. 10.1021/jp027379r Search in Google Scholar

39. Verma, A., Chakraborty, S. and Basu, J. K.: Adsorption study of hexavalent chromium using tamarind hull-based adsorbents Sep. Purif. Technol.50 (2006) 336. 10.1016/j.seppur.2005.12.007 Search in Google Scholar

40. Sarin, V. and Pant, K. K.: Removal of chromium from industrial waste by using eucalyptus bark. Bioresour. Technol.97 (2006) 1520. 1615449810.1016/j.biortech.2005.02.010 Search in Google Scholar

41. Limousin, G., Gaudet, J. P., Charlet, L., Szenknect, S., Barthes, V. and Krimissa, M.: Sorption isotherms: A review on physical bases, modeling and measurement Appl. Geochem.22 (2007) 249275. 10.1016/j.apgeochem.2006.09.010 Search in Google Scholar

42. Mohan, D., Singh, K. P. and Singh, V. K.: Removal of hexavalent chromium from aqueous solution using low-cost activated carbons derived from agricultural waste materials and activated carbon fabric cloth Ind. Eng. Chem. Res.44 (2005) 10271042. 10.1021/ie0400898 Search in Google Scholar

43. Saha, R., Mukherjee, K., Saha, I., Ghosh, A., Ghosh, S. K. and Saha, B.: Removal of hexavalent chromium from water by adsorption using mosambi peel (Citrus limetta)Res Chem Intermed39 (2013) 22452257. 10.1007/s11164-012-0754-z Search in Google Scholar

44. Elangovan, R., Philip, L. and Chandraraj, K.: Biosorption of chromium species by aquatic weeds: Kinetics and mechanism studies J. Hazard. Mater.152 (2008) 100112. 1768901210.1016/j.jhazmat.2007.06.067 Search in Google Scholar

45. Sharma, A. and Bhattacharyya, K. G.: Adsorption of Chromium (VI) on Azadirachta Indica (Neem)Leaf Powder Adsorption10 (2004) 327338. 10.1007/s10450-005-4818-x Search in Google Scholar

46. Park, D., Lim, S. R., Yun, Y. S. and Park, J. M.: Reliable evidences that the removal mechanism of hexavalent chromium by natural biomaterials is adsorption-coupled reductionChemosphere70 (2007) 298305. 1764415810.1016/j.chemosphere.2007.06.007 Search in Google Scholar

47. Copello, G. J., Garibotti, R. E., Varela, F., Tuttolomondo, M. V. and Diaz, L. E.: Exhausted Yerba Mate Leaves (Ilex paraguariensis) as Biosorbent for the Removal of Metals from Aqueous Solutions J. Braz. Chem. Soc.22 (2011) 790795. 10.1590/S0103-50532011000400024 Search in Google Scholar

48. Qaiser, S., Saleemi, A. R. and Ahmad, M. M.: Heavy metal uptake by agro based waste materials Electron. J. Biotechnol.10 (2007) 409. 10.2225/vol10-issue3-fulltext-12 Search in Google Scholar

49. Saha, R. and Saha, B.: Removal of hexavalent chromium from contaminated water by adsorption using mango leaves (Mangifera Indica) Des. Water Treat.52 (2014) 19281936. 10.1080/19443994.2013.804458 Search in Google Scholar

50. Park, D., Yun, Y. S. and Park, J. M.: Comment on the removal mechanism of hexavalent chromium by biomaterials or biomaterial-based activated carbons Ind. Eng. Chem. Res.45 (2006) 24052407. 10.1021/ie0509387 Search in Google Scholar

51. Huang, C. P. and Wu, M. H.: The removal of chromium (VI) from dilute aqueous solution by activated carbonWater Res.11 (1977) 673679. 10.1016/0043-1354(77)90106-3 Search in Google Scholar

52. Shanker, A. K., Cervantes, C., Loza-Tavera, H. and Avudainayagam, S.: Chromium toxicity in plantsEnviron Int.31(5) 739753. 1587820010.1016/j.envint.2005.02.003 Search in Google Scholar

53. Lozsan, A., Rivas, I., Rodriguez, G., Martinez, S. and Perez, M. A.: Determination of Surface-Active characteristics of a natural surfactant extracted from sapindus saponaria Tenside Surf. Det.54 (2017) 109117. 10.3139/113.110491 Search in Google Scholar

Received: 2017-04-17
Accepted: 2017-06-13
Published Online: 2017-11-13
Published in Print: 2017-11-15

© 2017, Carl Hanser Publisher, Munich