Accessible Requires Authentication Published by De Gruyter November 13, 2017

Electrocatalytic Hydrogenolysis of Chlorophenolic Compounds by Modified Electrodes in Aqueous Medium in the Absence and the Presence of Ionic Surfactant

Elektrokatalytische Hydrogenolyse von chlorphenolischen Verbindungen mit modifizierten Elektroden in wässrigem Medium in Abwesenheit und Gegenwart von ionischem Tensid
Sadia Boukreris, Hocine Ilikti, Mohammed Hadj Youcef, Aicha Khenifi and Tayeb Benabdallah

Abstract

The electrocatalytic hydrogenolysis of different chlorophenolic compounds, namely 2-chlorophenol (2CP) and pentachlorophenol (PCP) was performed on nickel-silica (Ni-SiO2) and nickel-clay (Ni-CY) electrode catalyts. The influence of the catalytic support and the surfactant agent was studied in aqueous media at different pH. Results demonstrated that different regioselectivities were observed according to the used catalytic support. The cyclohexanone was obtained as the major product. In presence of ionic surfactants (SDS and CTAB), the investigated electrodes exhibited a promising dechlorination and hydrogenation potential of aromatic halides with high electrocatalytic activity and good stability.

Kurzfassung

Die elektrokatalytische Hydrogenolyse von verschiedenen chlorphenolischen Verbindungen, nämlich 2-Chlorphenol (2CP) und Pentachlorphenol (PCP), wurde an Nickel-Siliciumdioxid (Ni-SiO2)- und Nickel-Ton (Ni-CY)-Elektrodenkatalysatoren durchgeführt. Der Einfluss des katalytischen Trägers und des Tensids wurde in wässrigen Medien bei unterschiedlichem pH-Werten untersucht. Die Ergebnisse zeigten, dass unterschiedliche Regioselektivitäten vorliegen, je nachdem, welcher katalytische Träger verwendet wurde. Cyclohexanon wurde als Hauptprodukt erhalten. In Gegenwart der ionischen Tenside SDS und CTAB zeigten die untersuchten Elektroden ein vielversprechendes Dechlorierungs- und Hydrierungspotential von aromatischen Halogeniden mit hoher elektrokatalytischer Aktivität und guter Stabilität.


*Correspondence address, Dr. Sadia Boukreris, Laboratoire de Chimie et d'Electrochimie des Complexes Métalliques (LCECM), Département de Chimie Organique Industrielle, Faculté de Chimie, Université des Sciences et de la Technologie d'Oran-Mohamed Boudiaf-(USTO-MB), BP: 1505 El-M'naouer, Oran 31000, Algérie, E-Mail:

Dr. Sadia Boukreris was born in 1971; she has received her bachelor's degree in chemistry engineering in 1997 and her master's degree in organic chemistry in 2004 from the University of the Sciences and Technology of Oran. Her research interest is in the applied of organic Chemistry in catalysis. She is currently a lecturer at the Faculty of Chemistry, USTOMB, Oran.

Prof. Hocine Ilikti received his B. Sc. in organic chemistry in 1984 and his M. Sc. in organic chemistry in 1992 from the University of Sciences and Technology, Oran, Algeria. He was awarded his Ph. D. in organic chemistry in 2004 from the University of Sciences and Technology, Oran. He is currently a professor at the Faculty of Chemistry, University of Sciences and Technology Oran, Algeria.

Dr. Mohammed Hadj Youcef received his M. Sc. and Ph. D. degrees from the University of the Sciences and Technology of Oran. He has published about 15 publications. He is currently a lecturer at the Faculty of Chemistry, University of the Sciences and Technology of Oran, Algeria. His focus is the separation of metallic complexes species from aqueous and surfactants solutions.

Dr. Aicha Khenifi was born in 1973; she has received her M. Sc. and Ph. D. degrees from the University of the Sciences and Technology of Oran. She has published about 12 publications. She is currently a lecturer at the Faculty of Chemistry, University of the Sciences and Technology of Oran, Algeria. His focus is in the applied of the mineral materials in separation and degradation of chemical species.

Prof. Tayeb Benabdallah received his M. Sc. degree in Organic Chemistry in 1983 from the University of Oran-Es-Senia. He was awarded his Ph. D. in Organic Chemistry in 1987 from the University of AIX-Marseille II under the supervision of Professor R. Guglielmetti. He has supervised more than 15 M. Sc. and Ph. D. students and published about 30 publications. He is currently a professor at the Faculty of Chemistry, University of the Sciences and Technology of Oran, Algeria.


References

1. Chunyue, C., Xie, Q., Shuo, C. and Huimin, Z.: Adsorption and electrocatalytic dechlorination of pentachlorophenol on palladium-loaded activated carbon fibers; Sep. Purif. Technol.47 (2005) 7379. 10.1016/j.seppur.2005.06.005 Search in Google Scholar

2. Bo, Y., Gang, Y. and Danmeng, S.: Electrocatalytic hydrodechlorination of 4-chlorobiphenyl in aqueous solution using palladized nickel foam cathode, Chemosphere.67 (2007) 13611367. 1714129510.1016/j.chemosphere.2006.10.046 Search in Google Scholar

3. Ilikti, H., Rekik, N. and Thomalla, M.: Electrocatalytic hydrogenation of alkyl-substituted phenols in aqueous solutions at a Raney nickel electrode in the presence of a non-micelle-forming cationic surfactant; J. Appl. Electrochem.34 (2004) 127. 10.1023/B:JACH.0000009932.06652 Search in Google Scholar

4. Yang, B., Wang, S., Yu, G. and Zhou, Y.: Electrocatalytic reduction of 2-chlorobiphenyl in contaminated water using palladium-modified electrode; Sep. Purif. Technol.63 (2008) 353. 10.1016/j.seppur.2008.05.025 Search in Google Scholar

5. Breton, S., Wittmeyer, A. B., Rios Martin, J., Leon Camacho, M., Lasia, A. and Menard, H.: Selective Electrocatalytic Hydrogenation of Linolenic Acid on Pd/Al2O3 and Pd-Co/Al2O3; Catalysts Inter. J. Electrochem.10 (2011) 485. 10.4061/2011/485194 Search in Google Scholar

6. Xiang, H., Yang, Y. and Lijuan, Y.: Electrocatalytic activity of Ce-PbO2/C anode for acid red B reduction in aqueous solution; J. Solid State Electrochem.19 (2015) 15991609. 10.1007/s10008-015-2781-3 Search in Google Scholar

7. Ivanova, N. M., Soboleva, E. A., Visurkhanova, Ya. A. and Kirilyus, I. V.: Electrocatalytic activity of polyaniline-copper composites in electrohydrogenation of p-nitroaniline; Russ. J. Electrochem.51 (2015) 166173. 10.1134/S1023193515020056 Search in Google Scholar

8. Zhou, H., Li, Y., Huang, J., Fang, C., Shan, D. and Kuang, Y.: Ag–Ni alloy nanoparticles for electrocatalytic reduction of benzyl chloride; Trans. Nonferrous Met. Soc. China.25 (2015) 40014007. 10.1016/S1003-6326(15)64049-3 Search in Google Scholar

9. Ilikti, H., Benabdallah, T., Boukreris, S., Aouad, M. R. and El Ashry, E. S. H.: Electrocatalytic Hydrogenation and Hydrogenolysis of Aromatic Halides by Raney nickel in the Presence of Different Surfactants; Tenside Surf. Det.45 (2008) 126130. 10.3139/113.100369 Search in Google Scholar

10. Pattabiraman, R.: Electrochemical investigations on carbon supported palladium catalysts; Appl. Catal. A153 (1997) 920. 10.1016/S0926-860X(96)00327-4 Search in Google Scholar

11. Shia, Q., Wanga, H., Liua, S., Panga, L. and Bianb, Z.: Electrocatalytic Reduction-oxidation of Chlorinated Phenols using a Nanostructured Pd-Fe Modified Graphene; Catalyst Electrochimica Acta.178 (2015) 92100. 10.1016/j.electacta.2015.07.186 Search in Google Scholar

12. Sun, Z., GeHui, HuXiang and PengYong-zhen: Preparation of foam-nickel composite electrode and its application to 2,4-dichlorophenol dechlorination in aqueous solution; Sep. Purif. Technol.72 (2010) 133139. 10.1016/j.seppur.2010.01.014 Search in Google Scholar

13. Mathiyarasu, J., Joseph, J., Phani, K. L. and Yegnaraman, V.: Electrochemical detection of phenol in aqueous solutions; Indian J. Chem. Technol.11 (2004). Search in Google Scholar

14. Tsyganok, A. I., Yamanaka, I. and Otsuka, K.: Pd-loaded carbon felt as the cathode for selective dechlorination of 2,4-dichlorophenoxyacetic acid in aqueous solution. J. Electrochem. Soc. 145 (1998) 38443850. 10.1149/1.1838883 Search in Google Scholar

15. Chen, G., Wang, Z. Y. and Xia, D. G.: Electrochemically reductive dechlorination of micro amounts of 2,4,6-trichlorophenol in aqueous medium on molybdenum oxide containing supported palladium; Electrochim. Acta. 50 (2004) 933937. 10.1016/j.electacta.2004.06.019 Search in Google Scholar

16. Cheng, H., Scott, K. and Christensen, P. A.: Engineering aspects of electrochemical hydrodehalogenation of 2,4-dichlorophenol in a solid polymer electrolyte reactor. Appl. Catal. A. 261 (2004) 16. 10.1016/j.apcata.2003.10.021 Search in Google Scholar

17. Cui, C. Y., Quan, X., Chen, S. and Zhao, H. M.: Adsorption and electrocatalytic dechlorination of pentachlorophenol on palladiumloaded activated carbon fibers. Sep. Purif. Technol.47 (2005) 7379. 10.1016/j.seppur.2005.06.005 Search in Google Scholar

18. Ilikti, H., Rekik, N. and Thomalla, M.: Electrocatalytic hydrogenation of phenol in aqueous solutions at a Raney nickel electrode in the presence of cationic surfactants; J. Appl. Electrochem.32 (2002) 603609. 10.1023/A:1020151429953 Search in Google Scholar

19. Primet, M., Dalmon, J. A. and Martin, G. A.: Adsorption of CO on well-defined Ni/SiO2 catalysts in the 195–373 K range studied by infrared spectroscopy and magnetic methods; J. Catal.46 (1977) 2536. 10.1016/0021-9517(77)90132-4 Search in Google Scholar

20. Park, S. J. and Jang, Y. S.: Preparation and characterization of activated carbon fibers supported with silver metal for antibacterial behavior; J. Colloid Interface Sci.261 (2003) 238243. 10.1016/S0021-9797(03)00083-3 Search in Google Scholar

21. Nitta, Y.: Preparation chemistry of precipitated Ni/SiO2 catalysts for enantioselective hydrogenation; J. Catalysis.96 (1985) 429438. 10.1016/0021-9517(85)90312-4 Search in Google Scholar

22. Li, Y. P., Cao, H. B. and Zhang, Y.: Electrochemical dechlorination of chloroacetic acids (CAAs) using hemoglobin-loaded carbon nanotube electrode; Chemosphere. 63 (2006) 35964. 1618574410.1016/j.chemosphere.2005.07.014 Search in Google Scholar

23. Ramesh, R., Damodar, J. and Reddy, S. J.: The electrocatalytic hydrogenation of α-aryl acrylic acids; Electrochem. Commun.4 (2002) 115117. 10.1016/S1388-2481(01)00284-3 Search in Google Scholar

24. Isse, A. A., Huang, B. B., Durante, C. and Gennaro, A.: Electrocatalytic dechlorination of volatile organic compounds at a copper cathode. Part I: Polychloromethanes; Appl. Catal. B: Environ.126 (2012) 347354. 10.1016/j.apcatb.2012.07.004 Search in Google Scholar

25. Perini, L., Durante, C., Favaro, M., Agnoli, S., Granozzi, G. and Gennaro, A.: Electrocatalysis at palladium nanoparticles: effect of the support nitrogen doping on the catalytic activation of carbon-halogen bond; Appl. Catal. B: Environ.144 (2014) 300307. 10.1016/j.apcatb.2013.07.023 Search in Google Scholar

26. Wang, H. and Wang, J. L.: Electrochemical degradation of 4-chlorophenol using a novel Pd/C gas-diffusion electrode; Appl. Catal. B: Environ.77 (2007) 5865. 10.1016/j.apcatb.2007.07.004 Search in Google Scholar

27. Wang, H. and Wang, J. L.: Electrochemical degradation of 2,4-dichlorophenol on a palladium modified gas-diffusion electrode; Electrochim. Acta. 53 (2008) 64026409. 10.1016/j.electacta.2008.04.080 Search in Google Scholar

28. Molina, C. B., Pizarro, A. H., Casas, J. A. and Rodriguez, J. J.: Aqueous-phase hydrodechlorination of chlorophenols with pillared clays-supported Pt, Pd and Rh catalysts; Appl. Catal. B: Environ.148 (2014) 330338. 10.1016/j.apcatb.2013.11.010 Search in Google Scholar

29. Martel, A., Mahdavi, B., Lessard, J., Brossard, L. and Menard, H.: Electrocatalytic hydrogenation of phenol on various electrode materials; Can. J. Chem.75 (1997) 1862. 10.1139/v97-619 Search in Google Scholar

30. Dabo, P., Cyr, A., Laplante, F., Jean, F., Menard, H. and Lessard, J.: Electrocatalytic dehydrochlorination of Pentachlorophenol to Phenol or Cyclohexanol; Environ. Sci. Technol.34 (2000) 12651268. 10.1021/es9911465 Search in Google Scholar

Received: 2017-04-09
Accepted: 2017-05-30
Published Online: 2017-11-13
Published in Print: 2017-11-15

© 2017, Carl Hanser Publisher, Munich