Accessible Requires Authentication Published by De Gruyter November 13, 2017

Removal of Insoluble Slimes from Potash Ore Using Flotation

Entfernung von unlöslichen Schlägen aus Kali-Erz mit Flotation
Da Li, Xuming Wang, Fangqin Cheng and Enze Li

Abstract

The low grade potash ores contain large amount of fine water insoluble minerals, which was defined as slime here. The removal of the slime from the low grade of potash ores (KCl < 10 %; slime > 40 %) from the Mahai Basin, Qinghai Province, PRC, was investigated using flotation. The characteristics of the slime sample, which was extracted from the potash ores sample, were examined by X-Ray Fluorescence Spectrometry and X-Ray Diffraction. It was found that more than 70 % of the slime was aluminum silicate minerals including feldspar, clay (phyllosilicates), silt, as well as gypsum and carbonate minerals. In this study the flotation response of the slime minerals was evaluated. It was found that a higher slime flotation recovery of the slime was obtained when the MR-1 surfactant (polyoxyethylene fatty acid ester)-kerosene-water emulsion was used as collector. Fourier Transform Infrared Spectrometry (FTIR Spectrometry), oil spreading, and contact angle results indicated that the MR-1 surfactant is selectively adsorbed on slime minerals surfaces and facilitates the spreading of kerosene.

Kurzfassung

Erze mit niedrigen Kali-Gehalt enthalten eine große Menge an feinen wasserunlöslichen Mineralien, die hier als Schlamm definiert wurde. Die Entfernung des Schlamms aus dem gering Kali-haltigem Erz (KCl < 10 %, Schlamm > 40 %) aus dem Mahai-Becken in der Provinz Qinghai, VR China, wurde mit Flotation untersucht. Die Eigenschaften der Schlammprobe, die aus der Kali-Erzprobe extrahiert wurde, wurden durch Röntgenfluoreszenz-Spektrometrie und Röntgenbeugung untersucht. Es wurde festgestellt, dass mehr als 70 % des Schlamms aus Aluminiumsilikatmineralien einschließlich Feldspat, Ton (Schichtsilikate), Staubsand, sowie Gips- und Carbonatmineralien bestehen. In dieser Studie wurde die Flotationsreaktion der Schlamm-Mineralien ausgewertet. Es wurde gefunden, dass eine höhere Flotationsrückgewinnung des Schlamms erhalten wurde, wenn eine Emulsion aus MR-1-Tensid (Polyoxyethylenfettsäureester), Kerosin und Wasser als Sammler verwendet wurde. Die Ergebnisse der Fourier-Transformations-Infrarot-Spektrometrie (FTIR-Spektrometer), Ölspreitungs- und Kontaktwinkel-Messungen zeigten, dass das MR-1-Tensid selektiv auf Schlamm-Mineralien adsorbiert wird und die Spreitung von Kerosin erleichtert.


*Correspondence address, Dr. Xuming Wang and Dr. Fangqin Cheng, Institute of Resources and Environmental Engineering, Shanxi University, No 92 Wucheng Road, Taiyuan, Shanxi 030006, China, Fangqin Cheng:, Fax: 86-035 17016893, E-Mail:
** Dr. Xuming Wang:, Department of Metallurgical Engineering, College of Mines and Earth Sciences, University of Utah, 135S 1460E, 412 WBB, Salt Lake City, UT 84112, U.S.A., Xuming Wang:, Fax: 801-581-4937, E-Mail:

Dr. Da Li was born in March 1982. He completed his Post Graduation in 2007. After completing his Ph. D. in 2015 from Shanxi University, Taiyuan. At present he is working as lecturer in Shanxi University, Taiyuan (Shanxi Province).

Dr. Xuming Wang was born in August 1959. He has been worked in industry and research institute for 10 years in China before he came to US to advance his academic career. After completing his Ph. D. in 2004 from the University of Utah, he worked in USG Research Center for 4 years. Since 2008 Dr. Wang is working as research professor at Department of Metallurgical Engineering in the University of Utah, USA.

Dr. Fangqin Cheng was born in July 1964. She has been worked in Nafine Chemical Industry Group Co., Ltd for 16 years in China. She completed her Ph. D. in 2007 from Shanxi University, Taiyuan. Since 2002 she is working as professor in Shanxi University, Taiyuan (Shanxi Province).

Mr. Enze Li was born in April 1988 and is currently a Ph. D. student at Shanxi University (China). He received his Bachelor's degree in Chemical Engineering in 2011 from Tianjin University of Science and Technology and Master's degree in Applied Chemistry in 2014 from China Institute of Daily Chemical Industry.


References

1. Cao, Q. B., Hao Du, H., Miller, J. D., Wang, X. M. and Cheng, F. Q.: Surface chemistry features in the flotation of KCl, Miner. Eng.23 (2010) 365373. 10.1016/j.mineng.2009.11.010 Search in Google Scholar

2. Tao, D., Dopico, P. G., Hines, J. and Kennedy, D.: An experimental study of clay binders in fine coal froth flotation, International Coal Preparation Congress (2010). Search in Google Scholar

3. Cazerlend, K. A. and Uork, L. B.: Flotation principals, Metallurgizdaf, Russia (1958). Search in Google Scholar

4. Arnold, B.J. and Aplan, F.F.: The effect of clay slimes on coal flotation, part I: the nature of the clay, Int. J. Miner. Process.17 (1986) 225242. 10.1016/0301-7516(86)90058-X Search in Google Scholar

5. Dippenaar, A.: The Effect of Particles on the Stability of Flotation Froth, IMM Report, South Africa. 81 (1988). Search in Google Scholar

6. Bulatovic, S. M.: Handbook of Flotation Reagents: Chemistry, Theory and Practice: Flotation of Sulphide Ores, Elsevier Science & Technology Books (2007) 685. 10.1016/B978-0-444-53083-7.01001-0 Search in Google Scholar

7. Wang, Y. H., Hu, Y. H., He, P. B. and Gu, G. H.: Test research on selective desliming of bauxite; Metal Mine4 (2004) 3840. 10.3321/j.issn:1001-1250.2004.04.013 Search in Google Scholar

8. Aliferova, S., Titkov, S., Sabirov, R., Novoselov, V. and Panteleeva, N.: Application of nonionic surface-active substances in combination with acrylamide focculants for silicate and carbonate mineral flotation; Miner. Eng.18 (2005) 10201023. 10.1016/j.mineng.2005.01.013 Search in Google Scholar

9. Wei, D. Y.: Potash Deposit and its Development of new Mexico of USA, Geology of Chemical Minerals23 (2001) 3138. 10.3969/j.issn.1006-5296.2001.01.006 Search in Google Scholar

10. Yalamanchili, M. R. and Miller, J. D.: Removal of insoluble slimes from potash ore by air-sparged hydrocyclone flotation, Miner. Eng.32 (1995) 169177. 10.1016/0892-6875(94)00111-O Search in Google Scholar

11. Wang, J. L. and Lin, S.: Removal of slime from potash ore and rock salt using magnetic separation, Metallic Ore Dressing Abroad11 (2007) 3435. Search in Google Scholar

12. Pawlik, M., Laskowski, J. S. and Ansari, A.: Effect of carboxymethyl cellulose and ionic strength on stability of mineral suspensions in potash ore flotation systems, J. Colloid. Interf. Sci.260 (2003) 251258. 10.1016/S0021-9797(02)00225-4 Search in Google Scholar

13. Titkov, S.: Flotation of water-soluble mineral resources, Int. J. Miner. Process.74 (2004) 107113. 10.1016/j.minpro.2003.09.008 Search in Google Scholar

14. Li, C. G. and Yu, T.: Improved flotation deslime process for high clay content potash ore, Metallic Ore Dressing Abroad10 (2007) 1720. Search in Google Scholar

15. Laskowski, J. S.: Developments in mineral processing, in: Fuerstenau, D. W. (Ed.), Coal flotation and fine coal utilization, Elsevier Science Publishers (2001) 31. 10.1016/S0167-4528(01)80005-3 Search in Google Scholar

16. Drelich, J. and Miller, J. D.: A systematic comparison of sessile-drop and captive-bubble contact angle methods, SME Annual Meeting (1995) 9511. 10.13140/2.1.3109.8565 Search in Google Scholar

Received: 2016-12-09
Accepted: 2017-08-12
Published Online: 2017-11-13
Published in Print: 2017-11-15

© 2017, Carl Hanser Publisher, Munich