Abstract
Herein, we have synthesized and characterized dicationic Gemini surfactants. The effect of their micelles on the rate constant of ninhydrin with [Cu(II)-Gly-Gly]+ complex reaction was investigated under pseudo-first-order-conditions. Experiments were carried out by means of spectrophotometry. First- and fractional-order dependencies on [Cu(II)-Gly-Gly]+ and ninhydrin, respectively, were found. The results indicated that the efficiency of micellar catalysis by Gemini surfactants was significantly higher as compared to single-chained surfactant cetyltrimethylammonium bromide, CTAB. The Gemini surfactant produces a catalytic effect and leveling-off regions (just like CTAB) on the reaction rate. Later, Gemini with higher concentrations gives a third region of increasing kψ. The effect of surfactants was rationalized by hydrophobic and electrostatic interactions. The observed kinetic effects are explained by applying the Menger-Portnoy model.
Kurzfassung
In dieser Untersuchung wurden di-kationische Geminitenside synthetisiert und charakterisiert. Der Einfluss ihrer Mizellen auf die Geschwindigkeitskonstante der Ninhydrin-[Cu(II)-Gly-Gly]+-Komplexreaktion wurde unter den Bedingungen der Pseudo-Ersten-Ordnung untersucht. Experimente wurden mittels Spektrophotometrie durchgeführt. Es wurden Abhängigkeiten erster bzw. gebrochener Ordnung von dem Komplex [Cu(II)-Gly-Gly]+ bzw. von Ninhydrin gefunden. Die Ergebnisse zeigten, dass die Effizienz der mizellaren Katalyse durch die Geminitenside signifikant höher war als die mit dem einfachen Tensid Cetyltrimethylammoniumbromid (CTAB) durchgeführten Reaktion. Das Geminitensid erzeugt einen katalytischen Effekt auf die Reaktionsgeschwindigkeit und abflachende Bereiche (genau wie CTAB). Später zeigt sich bei höheren Geminitensid-Konzentrationen eine dritte Region mit zunehmendem kψ. Der Einfluss der Tenside wurde durch hydrophobe und elektrostatische Wechselwirkungen begründet. Die beobachteten kinetischen Effekte werden durch Anwendung des Menger-Portnoy-Modells erklärt.
References
1. Nasr-El-Din, H. A. and Taylor, K. C.: Micelles, Microemulsions and Monolayers, edited by Shah, D. O., New York, Marcel Dekker (1998). ISBN: 9780824799908.Search in Google Scholar
2. MyersD.: Surfactant Science and Technology, 3rd ed., New Jersey, VCH Publishers (2005). 10.1002/047174607XSearch in Google Scholar
3. Mukerjee, P. and Mysels, K. J.: Critical Micelle Concentrations of Aqueous Surfactant Systems, Washington, DC, Superintendent of Documents (1971). 10.1002/jps.2600610254Search in Google Scholar
4. Kresheck, G. C.: edited by Franks, F., Water: A Comprehensive Treatise, New York, Plenum Press (1975). 10.1007/978-4684-2958-9Search in Google Scholar
5. Kumar, D. and Rub, M. A.: Effect of anionic surfactant and temperature on micellization behaviour of promethazine hydrochloride drug in absence and presence of urea, J. Mol. Liq.238 (2017) 389–396. 10.1016/j.molliq.2017.05.027Search in Google Scholar
6. Kumar, D. and Rub, M. A.: Kinetic study of nickel-glycylglycine with ninhydrin in alkanediyl-α,ω-Gemini (m-s-m type) surfactant system, J. Mol. Liq.240 (2017) 253–257. 10.1016/j.molliq.2017.05.088Search in Google Scholar
7. Ghosh, A., Datta, I., Ghatak, S., Mahali, K., Bhattacharyya, S. S. and Saha, B.: Picolinic acid promoted permanganate oxidation of d-mannitol in micellar medium, Tenside Surf. Deterg.53 (2016) 332–346. 10.3139/113.110440Search in Google Scholar
8. Rub, M. A., Khan, F., Kumar, D. and Asiri, A. M.: Study of mixed micelles of promethazine hydrochloride (PMT) and nonionic surfactant (TX-100) mixtures at different temperatures and compositions, Tenside Surf. Deterg.52 (2015) 236–244. 10.3139/113.110371Search in Google Scholar
9. Mukherjee, K. and Saha, B.: Best combination of promoter and micellar catalyst for room temperature rapid conversion of d-lyxose to d-lyxonic acid in aqueous medium, Tenside Surf. Deterg.52 (2015) 302–310. 10.3139/113.110379Search in Google Scholar
10. Naqvi, A. Z., Rub, M. A. and Kabir-ud-Din: Study of phospholipid induced phase separation in amphiphilic drugs, Colloid J.77 (2015) 525–531. 10.1134/S1061933X15040158Search in Google Scholar
11. Zana, R.: Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: a review, Adv. Colloid Interface Sci.97 (2002) 205–253. 10.1016/S0001-8686(01)00069-0Search in Google Scholar
12. Ren, C. C., Wang, F., Zhang, Z. Q., Nie, H. H., Li, N. and Cui, M.: Synthesis, surface activity and aggregation behavior of Gemini imidazolium surfactants 1,3-bis(3-alkylimidazolium-1-yl) propane bromide, Colloids Surf. A467 (2015) 1–8. 10.1016/j.colsurfa.2014.11.031Search in Google Scholar
13. Tawfik, S. M.: Synthesis, surface, biological activity and mixed micellar phase properties of some biodegradable Gemini cationic surfactants containing oxycarbonyl groups in the lipophilic part, J. Ind. Eng. Chem.28 (2015) 171–183. 10.1016/j.jiec.2015.02.011Search in Google Scholar
14. Kumar, D. and Rub, M. A.: Effect of sodium taurocholate on aggregation behavior of amphiphilic drug solution, Tenside Surf. Deterg.52 (2015) 464–472. 10.3139/113.110398Search in Google Scholar
15. Rub, M. A., Kumar, D., Azum, N., Khan, F. and AsiriA. M.: Study of the interaction between promazine hydrochloride and surfactant (conventional/Gemini) mixtures at different temperatures, J. Sol. Chem.43 (2014) 930–949. 10.1007/s10953-014-0174-3Search in Google Scholar
16. Kumar, D. and Rub, M. A.: Aggregation behavior of amphiphilic drug promazine hydrochloride and sodium dodecylbenzenesulfonate mixtures under the influence of NaCl/urea at various concentration and temperatures, J. Phys. Org. Chem.29 (2016) 394–405. 10.1002/poc.3546Search in Google Scholar
17. Akram, M., Kumar, D. and Kabir-ud-Din: Catalytic effect of CTAB on the interaction of dipeptide glycyl-tyrosine (gly-tyr) with ninhydrin, J. Saudi Chem. Soc.18 (2014) 520–527. 10.1016/j.jscs.2011.10.019Search in Google Scholar
18. Yan, Z., Li, Y., Wang, X., Dan, J. and WangJ.: Effect of glycyl dipeptides on the micellar behavior of Gemini surfactant: a conductometric and fluorescence spectroscopic study, J. Mol. Liq.161 (2011) 49–54. 10.1016/j.molliq.2011.04.009Search in Google Scholar
19. Friedman, F.: Applications of the ninhydrin reaction for analysis of amino acids, peptides, and proteins to agricultural and biomedical sciences, J. Agric. Food Chem.52 (2004) 385–406. 14759124 10.1021/jf030490pSearch in Google Scholar PubMed
20. Kumar, D., Neo, K. E. and Rub, M. A.: Effect of alkanediyl-α,ω-type cationic dimeric (Gemini) surfactants on the reaction rate of ninhydrin with [Cu(II)-Gly-Tyr]+ complex, J. Surf. Deterg.19 (2016) 101–109. 10.1007/s11743-015-1754-ySearch in Google Scholar
21. Kumar, D., Neo, K. E. and Rub, M. A.: Dipeptide glycyl-glycine (gly-gly)– ninhydrin reaction: effect of alkanediyl-α,ω-bis(dimethylcetylammonium bromide) (16-s-16, s = 4, 5, 6) Gemini surfactants on the reaction rate, Tenside Surf. Deterg.53 (2016) 168–175. 10.3139/113.110422Search in Google Scholar
22. Kumar, D.Rub, M. A., Akram, M. and Kabir-ud-Din: Interaction of chromium(III) complex of glycylphenylalanine with ninhydrin in aqueous and cetyltrimethylammonium bromide (CTAB) micellar media, Tenside Surf. Deterg.51 (2014) 157–163. 10.3139/113.110296Search in Google Scholar
23. Kumar, D.Rub, M. A., Akram, M. and Kabir-ud-Din: Interaction between dipeptide (glycyl-phenylalanine) and ninhydrin: Role of CTAB and Gemini (16-s-16, s = 4, 5, 6) surfactant micelles, J. Colloid Interface Sci.418 (2014) 324–329. 24461852 10.1016/j.jcis.2013.12.023Search in Google Scholar PubMed
24. Kabir-ud-Din and Siddiqui, U. S.: Catalytic role of Gemini surfactant micelles in the ninhydrin–l-isoleucine reaction, Colloid J.72 (2010) 14–22. 10.1134/S1061933X10010035Search in Google Scholar
25. Khan, I. A., Bano, M. and Kabir-ud-Din: Micellar and solvent effects on the rate of reaction between l-tyrosine and ninhydrin, J. Disp. Sci. Technol.31 (2010) 177–182. 10.1080/01932690903110269Search in Google Scholar
26. Britton, H. T. S.: Hydrogen Ions, Vol. 1, London, Chapman and Hall (1942). 10.1002/500-04-843-15Search in Google Scholar
27. Kabir-ud-Din, Fatma, W., Khan, Z. A. and Dar, A. A.: 1H NMR and viscometric studies on cationic Gemini surfactants in presence of aromatic acids and salts, J. Phys. Chem. B111 (2007) 8860–8867. 17625820 10.1021/jp070782jSearch in Google Scholar PubMed
28. Akram, M., Zaidi, N. H. and Kabir-ud-Din: Micellar and salt effects on the interaction of [Cu(II)-Gly-Gly]+ with ninhydrin, Int. J. Chem. Kinet.39 (2007) 556–564. 10.1002/kin.20268Search in Google Scholar
29. Kumar, D., Neo, K. E. and Rub, M. A.: Interaction between copper(II) complex of glycylphenylalanine and ninhydrin in aqueous–micellar solutions of Gemini surfactants, J. Mol. Liq.212 (2015) 872–878. 10.1016/j.molliq.2015.10.045Search in Google Scholar
30. Kumar, D.Rub, M. A., Akram, M. and Kabir-ud-Din: Effect of Gemini (alkanediyl-α,ω-bis(dimethylcetylammonium bromide)) (16-s-16, s = 4, 5, 6) surfactants on the interaction of ninhydrin with chromium-glycylphenylalanine, Spectrochim. Acta A132 (2014) 288–294. 10.1016/j.saa.2014.05.002Search in Google Scholar PubMed
31. Kumar, D.Rub, M. A., Akram, M. and Kabir-ud-Din: Role of Gemini surfactants (m-s-m type; m = 16, s = 4–6) on the reaction of [Zn(II)-Gly-Phe]+ with ninhydrin, J. Phys. Org. Chem.27 (2014) 729–734. 10.1002/poc.3332Search in Google Scholar
32. Akram, M., Zaidi, N. H. and Kabir-ud-Din: Micelle-catalyzed interaction between [Ni(II)-Gly-Gly]+ and ninhydrin, J. Disp. Sci. Technol.29 (2008) 1373–1380. 10.1080/01932690802313030Search in Google Scholar
33. Menger, F. M. and Portnoy, C. E.: Chemistry of reactions proceeding inside molecular aggregates, J. Am. Chem. Soc.89 (1967) 4698–4703. 10.1021/ja00994a023Search in Google Scholar
34. Romsted, L. S.: Micellization, Solubilization and Microemulsions, vol. 2, edited by Mittal, K. L., New York, Plenum Press (1977). 10.1007/978-1-4613-4157-4Search in Google Scholar
35. Bunton, C. A.: Reaction Kinetics in Aqueous Surfactant Solutions, Catal. Rev. Sci. Eng.20 (1979) 1–56. 10.1080/03602457908065104Search in Google Scholar
36. Cerichelli, G., Mancini, G., Luchetti, G., Savelli, G. and Bunton, C. A.: Surfactant effects upon cyclization of o-(.omega.-Haloalkoxy)phenoxide ions. the role of premicellar assemblies, Langmuir10 (1994) 3982–3987. 10.1021/la00023a014Search in Google Scholar
37. Zhang, Y., Li, X., Liu, J. and Zeng, X.: Micellar catalysis of composite reactions–the effect of SDS micelles and premicelles on the alkaline fading of crystal violet and malachite green, J. Disp. Sci. Technol.23 (2002) 473–481. 10.1081/DIS-120014015Search in Google Scholar
38. Bunton, C. A. and Savelli, G.: Organic reactivity in aqueous micelles and similar assemblies, Adv. Phys. Org. Chem.22 (1986) 213–309. 10.1016/S0065-3160(08)60169-0Search in Google Scholar
39. Brinchi, L., Germani, R., Gorracci, L., Savelli, G. and Bunton, C. A.: Decarboxylation and dephosphorylation in new Gemini surfactants. changes in aggregate structures, Langmuir18 (2002) 7821–7825. 10.1021/la020250oSearch in Google Scholar
40. Kabir-ud-Din and Fatma, W.: Role of cationic Gemini surfactants toward enhanced ninhydrin–tryptophan reaction, J. Phys. Org. Chem.20 (2007) 440–447. 10.1002/poc.1171Search in Google Scholar
41. Akram, M., Zaidi, N. H. and Kabir-ud-Din: Kinetics and mechanism of interaction of dipeptide (glycyl–glycine) with ninhydrin in aqueous micellar media, Int. J. Chem. Kinet.38 (2006) 643–650. 10.1002/kin.20195Search in Google Scholar
© 2018, Carl Hanser Publisher, Munich