Accessible Requires Authentication Published by De Gruyter January 15, 2018

Synthesis and Characterization of Dicationic Gemini Surfactant Micelles and their Effect on the Rate of Ninhydrin–Copper-Peptide Complex Reaction

Synthese und Charakterisierung von dikationischen Geminitensid-Mizellen und ihr Einfluss auf die Geschwindigkeit der Ninhydrin-Kupfer-Peptid-Komplexreaktion
Dileep Kumar and Malik Abdul Rub

Abstract

Herein, we have synthesized and characterized dicationic Gemini surfactants. The effect of their micelles on the rate constant of ninhydrin with [Cu(II)-Gly-Gly]+ complex reaction was investigated under pseudo-first-order-conditions. Experiments were carried out by means of spectrophotometry. First- and fractional-order dependencies on [Cu(II)-Gly-Gly]+ and ninhydrin, respectively, were found. The results indicated that the efficiency of micellar catalysis by Gemini surfactants was significantly higher as compared to single-chained surfactant cetyltrimethylammonium bromide, CTAB. The Gemini surfactant produces a catalytic effect and leveling-off regions (just like CTAB) on the reaction rate. Later, Gemini with higher concentrations gives a third region of increasing kψ. The effect of surfactants was rationalized by hydrophobic and electrostatic interactions. The observed kinetic effects are explained by applying the Menger-Portnoy model.

Kurzfassung

In dieser Untersuchung wurden di-kationische Geminitenside synthetisiert und charakterisiert. Der Einfluss ihrer Mizellen auf die Geschwindigkeitskonstante der Ninhydrin-[Cu(II)-Gly-Gly]+-Komplexreaktion wurde unter den Bedingungen der Pseudo-Ersten-Ordnung untersucht. Experimente wurden mittels Spektrophotometrie durchgeführt. Es wurden Abhängigkeiten erster bzw. gebrochener Ordnung von dem Komplex [Cu(II)-Gly-Gly]+ bzw. von Ninhydrin gefunden. Die Ergebnisse zeigten, dass die Effizienz der mizellaren Katalyse durch die Geminitenside signifikant höher war als die mit dem einfachen Tensid Cetyltrimethylammoniumbromid (CTAB) durchgeführten Reaktion. Das Geminitensid erzeugt einen katalytischen Effekt auf die Reaktionsgeschwindigkeit und abflachende Bereiche (genau wie CTAB). Später zeigt sich bei höheren Geminitensid-Konzentrationen eine dritte Region mit zunehmendem kψ. Der Einfluss der Tenside wurde durch hydrophobe und elektrostatische Wechselwirkungen begründet. Die beobachteten kinetischen Effekte werden durch Anwendung des Menger-Portnoy-Modells erklärt.


*Correspondence address, Dr. Dileep Kumar, Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam, E-mail:

Dr. Dileep Kumar is currently working as a Researcher at Ton Duc Thang University (TDTU), Ho Chi Minh City, Vietnam. Before joining TDTU, he was a Post Doctoral Fellow (PDF) at Universiti Tunku Abdul Rahman, Perak, Malaysia. He achieved his Ph.D. degree from Aligarh Muslim University, Aligarh, India. His research interests include chemical kinetics, micellar catalysis, metal-binding with protein, clouding phenomenon, and solution behavior of amphiphiles.

Dr. Malik Abdul Rub received his M.Sc. and Ph.D. degrees from Aligarh Muslim University, Aligarh, India. Presently, he is working as an Assistant Professor at King Abdulaziz University, Jeddah, Saudi Arabia. His current research interests are mixed micellization study of amphiphilic drugs with different additives and clouding phenomenon in amphiphilic systems.


References

1. Nasr-El-Din, H. A. and Taylor, K. C.: Micelles, Microemulsions and Monolayers, edited by Shah, D. O., New York, Marcel Dekker (1998). ISBN: 9780824799908. Search in Google Scholar

2. MyersD.: Surfactant Science and Technology, 3rd ed., New Jersey, VCH Publishers (2005). 10.1002/047174607X Search in Google Scholar

3. Mukerjee, P. and Mysels, K. J.: Critical Micelle Concentrations of Aqueous Surfactant Systems, Washington, DC, Superintendent of Documents (1971). 10.1002/jps.2600610254 Search in Google Scholar

4. Kresheck, G. C.: edited by Franks, F., Water: A Comprehensive Treatise, New York, Plenum Press (1975). 10.1007/978-4684-2958-9 Search in Google Scholar

5. Kumar, D. and Rub, M. A.: Effect of anionic surfactant and temperature on micellization behaviour of promethazine hydrochloride drug in absence and presence of urea, J. Mol. Liq.238 (2017) 389396. 10.1016/j.molliq.2017.05.027 Search in Google Scholar

6. Kumar, D. and Rub, M. A.: Kinetic study of nickel-glycylglycine with ninhydrin in alkanediyl-α,ω-Gemini (m-s-m type) surfactant system, J. Mol. Liq.240 (2017) 253257. 10.1016/j.molliq.2017.05.088 Search in Google Scholar

7. Ghosh, A., Datta, I., Ghatak, S., Mahali, K., Bhattacharyya, S. S. and Saha, B.: Picolinic acid promoted permanganate oxidation of d-mannitol in micellar medium, Tenside Surf. Deterg.53 (2016) 332346. 10.3139/113.110440 Search in Google Scholar

8. Rub, M. A., Khan, F., Kumar, D. and Asiri, A. M.: Study of mixed micelles of promethazine hydrochloride (PMT) and nonionic surfactant (TX-100) mixtures at different temperatures and compositions, Tenside Surf. Deterg.52 (2015) 236244. 10.3139/113.110371 Search in Google Scholar

9. Mukherjee, K. and Saha, B.: Best combination of promoter and micellar catalyst for room temperature rapid conversion of d-lyxose to d-lyxonic acid in aqueous medium, Tenside Surf. Deterg.52 (2015) 302310. 10.3139/113.110379 Search in Google Scholar

10. Naqvi, A. Z., Rub, M. A. and Kabir-ud-Din: Study of phospholipid induced phase separation in amphiphilic drugs, Colloid J.77 (2015) 525531. 10.1134/S1061933X15040158 Search in Google Scholar

11. Zana, R.: Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: a review, Adv. Colloid Interface Sci.97 (2002) 205253. 10.1016/S0001-8686(01)00069-0 Search in Google Scholar

12. Ren, C. C., Wang, F., Zhang, Z. Q., Nie, H. H., Li, N. and Cui, M.: Synthesis, surface activity and aggregation behavior of Gemini imidazolium surfactants 1,3-bis(3-alkylimidazolium-1-yl) propane bromide, Colloids Surf. A467 (2015) 18. 10.1016/j.colsurfa.2014.11.031 Search in Google Scholar

13. Tawfik, S. M.: Synthesis, surface, biological activity and mixed micellar phase properties of some biodegradable Gemini cationic surfactants containing oxycarbonyl groups in the lipophilic part, J. Ind. Eng. Chem.28 (2015) 171183. 10.1016/j.jiec.2015.02.011 Search in Google Scholar

14. Kumar, D. and Rub, M. A.: Effect of sodium taurocholate on aggregation behavior of amphiphilic drug solution, Tenside Surf. Deterg.52 (2015) 464472. 10.3139/113.110398 Search in Google Scholar

15. Rub, M. A., Kumar, D., Azum, N., Khan, F. and AsiriA. M.: Study of the interaction between promazine hydrochloride and surfactant (conventional/Gemini) mixtures at different temperatures, J. Sol. Chem.43 (2014) 930949. 10.1007/s10953-014-0174-3 Search in Google Scholar

16. Kumar, D. and Rub, M. A.: Aggregation behavior of amphiphilic drug promazine hydrochloride and sodium dodecylbenzenesulfonate mixtures under the influence of NaCl/urea at various concentration and temperatures, J. Phys. Org. Chem.29 (2016) 394405. 10.1002/poc.3546 Search in Google Scholar

17. Akram, M., Kumar, D. and Kabir-ud-Din: Catalytic effect of CTAB on the interaction of dipeptide glycyl-tyrosine (gly-tyr) with ninhydrin, J. Saudi Chem. Soc.18 (2014) 520527. 10.1016/j.jscs.2011.10.019 Search in Google Scholar

18. Yan, Z., Li, Y., Wang, X., Dan, J. and WangJ.: Effect of glycyl dipeptides on the micellar behavior of Gemini surfactant: a conductometric and fluorescence spectroscopic study, J. Mol. Liq.161 (2011) 4954. 10.1016/j.molliq.2011.04.009 Search in Google Scholar

19. Friedman, F.: Applications of the ninhydrin reaction for analysis of amino acids, peptides, and proteins to agricultural and biomedical sciences, J. Agric. Food Chem.52 (2004) 385406. 14759124 10.1021/jf030490p Search in Google Scholar

20. Kumar, D., Neo, K. E. and Rub, M. A.: Effect of alkanediyl-α,ω-type cationic dimeric (Gemini) surfactants on the reaction rate of ninhydrin with [Cu(II)-Gly-Tyr]+ complex, J. Surf. Deterg.19 (2016) 101109. 10.1007/s11743-015-1754-y Search in Google Scholar

21. Kumar, D., Neo, K. E. and Rub, M. A.: Dipeptide glycyl-glycine (gly-gly)– ninhydrin reaction: effect of alkanediyl-α,ω-bis(dimethylcetylammonium bromide) (16-s-16, s = 4, 5, 6) Gemini surfactants on the reaction rate, Tenside Surf. Deterg.53 (2016) 168175. 10.3139/113.110422 Search in Google Scholar

22. Kumar, D.Rub, M. A., Akram, M. and Kabir-ud-Din: Interaction of chromium(III) complex of glycylphenylalanine with ninhydrin in aqueous and cetyltrimethylammonium bromide (CTAB) micellar media, Tenside Surf. Deterg.51 (2014) 157163. 10.3139/113.110296 Search in Google Scholar

23. Kumar, D.Rub, M. A., Akram, M. and Kabir-ud-Din: Interaction between dipeptide (glycyl-phenylalanine) and ninhydrin: Role of CTAB and Gemini (16-s-16, s = 4, 5, 6) surfactant micelles, J. Colloid Interface Sci.418 (2014) 324329. 24461852 10.1016/j.jcis.2013.12.023 Search in Google Scholar

24. Kabir-ud-Din and Siddiqui, U. S.: Catalytic role of Gemini surfactant micelles in the ninhydrin–l-isoleucine reaction, Colloid J.72 (2010) 1422. 10.1134/S1061933X10010035 Search in Google Scholar

25. Khan, I. A., Bano, M. and Kabir-ud-Din: Micellar and solvent effects on the rate of reaction between l-tyrosine and ninhydrin, J. Disp. Sci. Technol.31 (2010) 177182. 10.1080/01932690903110269 Search in Google Scholar

26. Britton, H. T. S.: Hydrogen Ions, Vol. 1, London, Chapman and Hall (1942). 10.1002/500-04-843-15 Search in Google Scholar

27. Kabir-ud-Din, Fatma, W., Khan, Z. A. and Dar, A. A.: 1H NMR and viscometric studies on cationic Gemini surfactants in presence of aromatic acids and salts, J. Phys. Chem. B111 (2007) 88608867. 17625820 10.1021/jp070782j Search in Google Scholar

28. Akram, M., Zaidi, N. H. and Kabir-ud-Din: Micellar and salt effects on the interaction of [Cu(II)-Gly-Gly]+ with ninhydrin, Int. J. Chem. Kinet.39 (2007) 556564. 10.1002/kin.20268 Search in Google Scholar

29. Kumar, D., Neo, K. E. and Rub, M. A.: Interaction between copper(II) complex of glycylphenylalanine and ninhydrin in aqueous–micellar solutions of Gemini surfactants, J. Mol. Liq.212 (2015) 872878. 10.1016/j.molliq.2015.10.045 Search in Google Scholar

30. Kumar, D.Rub, M. A., Akram, M. and Kabir-ud-Din: Effect of Gemini (alkanediyl-α,ω-bis(dimethylcetylammonium bromide)) (16-s-16, s = 4, 5, 6) surfactants on the interaction of ninhydrin with chromium-glycylphenylalanine, Spectrochim. Acta A132 (2014) 288294. 10.1016/j.saa.2014.05.002 Search in Google Scholar

31. Kumar, D.Rub, M. A., Akram, M. and Kabir-ud-Din: Role of Gemini surfactants (m-s-m type; m = 16, s = 4–6) on the reaction of [Zn(II)-Gly-Phe]+ with ninhydrin, J. Phys. Org. Chem.27 (2014) 729734. 10.1002/poc.3332 Search in Google Scholar

32. Akram, M., Zaidi, N. H. and Kabir-ud-Din: Micelle-catalyzed interaction between [Ni(II)-Gly-Gly]+ and ninhydrin, J. Disp. Sci. Technol.29 (2008) 13731380. 10.1080/01932690802313030 Search in Google Scholar

33. Menger, F. M. and Portnoy, C. E.: Chemistry of reactions proceeding inside molecular aggregates, J. Am. Chem. Soc.89 (1967) 46984703. 10.1021/ja00994a023 Search in Google Scholar

34. Romsted, L. S.: Micellization, Solubilization and Microemulsions, vol. 2, edited by Mittal, K. L., New York, Plenum Press (1977). 10.1007/978-1-4613-4157-4 Search in Google Scholar

35. Bunton, C. A.: Reaction Kinetics in Aqueous Surfactant Solutions, Catal. Rev. Sci. Eng.20 (1979) 156. 10.1080/03602457908065104 Search in Google Scholar

36. Cerichelli, G., Mancini, G., Luchetti, G., Savelli, G. and Bunton, C. A.: Surfactant effects upon cyclization of o-(.omega.-Haloalkoxy)phenoxide ions. the role of premicellar assemblies, Langmuir10 (1994) 39823987. 10.1021/la00023a014 Search in Google Scholar

37. Zhang, Y., Li, X., Liu, J. and Zeng, X.: Micellar catalysis of composite reactions–the effect of SDS micelles and premicelles on the alkaline fading of crystal violet and malachite green, J. Disp. Sci. Technol.23 (2002) 473481. 10.1081/DIS-120014015 Search in Google Scholar

38. Bunton, C. A. and Savelli, G.: Organic reactivity in aqueous micelles and similar assemblies, Adv. Phys. Org. Chem.22 (1986) 213309. 10.1016/S0065-3160(08)60169-0 Search in Google Scholar

39. Brinchi, L., Germani, R., Gorracci, L., Savelli, G. and Bunton, C. A.: Decarboxylation and dephosphorylation in new Gemini surfactants. changes in aggregate structures, Langmuir18 (2002) 78217825. 10.1021/la020250o Search in Google Scholar

40. Kabir-ud-Din and Fatma, W.: Role of cationic Gemini surfactants toward enhanced ninhydrin–tryptophan reaction, J. Phys. Org. Chem.20 (2007) 440447. 10.1002/poc.1171 Search in Google Scholar

41. Akram, M., Zaidi, N. H. and Kabir-ud-Din: Kinetics and mechanism of interaction of dipeptide (glycyl–glycine) with ninhydrin in aqueous micellar media, Int. J. Chem. Kinet.38 (2006) 643650. 10.1002/kin.20195 Search in Google Scholar

Received: 2017-03-06
Accepted: 2017-05-24
Published Online: 2018-01-15
Published in Print: 2018-01-19

© 2018, Carl Hanser Publisher, Munich