Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 24, 2019

Micellization and Counterion Binding Behavior of Cetylpyridinium Chloride in Aqueous Solutions of Sodium Bromide and Tetrabutylammonium Bromide

Mizellisierung und Gegenionbindung von Cetylpyridiniumchlorid in wässrigen Lösungen mit Natriumbromid und Tetrabutylammoniumbromid
  • Teiborlang Mukhim and Kochi Ismail

Abstract

Critical micelle concentrations (CMC) of cetylpyridinium chloride (CPC) in aqueous sodium bromide and tetrabutylammonium bromide (TBAB) solutions were determined at 30 °C by conductivity and surface tension measurements. Bromide counterions reduce CMC of CPC more than the chloride. The modified form of the Corrin-Harkins (CH) equation describes the variation of CMC of CPC with the concentration of added electrolyte containing different counterions. It is demonstrated that the mixed-electrolyte-model (MEM) of Shanks and Franses can be applied to analyze the conductivity data of the surfactant solution containing mixed counterions, which was otherwise used for a surfactant solution containing single counterion only. The value of the total counterion binding constant (β) obtained from the MEM was then used to separate from the slope of the modified CH equation the counterion binding constants for chloride (β1) and bromide (β2) ions. This data analysis showed that binding of bromide counterion to cetylpyridinium ionic micelle is stronger than that of the chloride counterion, which is in accordance with the positions of chloride and bromide ions in the Hoffmeister series and the results reported from other studies.

Kurzfassung

Die kritischen Mizellenbildungskonzentrationen (CMC) von Cetylpyridiniumchlorid (CPC) in wässerigen Lösungen mit Natriumbromid und Tetrabutylammoniumbromid (TBAB) wurden bei 30°C anhand von Leitfähigkeits- und Oberflächenspannungsmessung bestimmt. Das Bromid-Gegenion reduziert die CMC des CPC stärker als das Chlorid-ion. Die modifizierte Corrin-Harkins(CH)-Gleichung beschreibt die Veränderung der CMC von CPC mit der Konzentration des zugesetzten Elektrolyten, der verschiedene Gegenionen enthält. Es wird gezeigt, dass das Mischelektrolytmodell (MEM) von Shanks und Franses zur Analyse der Leitfähigkeitsdaten von Tensidlösungen mit gemischten Gegenionen verwendet werden kann, das ansonsten für eine Tensidlösung mit nur einem einzigen Gegenion verwendet wurden. Der Wert der Gesamt-Gegenion-Bindungskonstante (β), die aus dem MEM erhalten wurde, wurde dann verwendet, um die Gegenion-Bindungskonstanten für Chlorid(β1)- und Bromid(β2)-Ionen von der Steigung der modifizierten CH-Gleichung zu trennen. Die Datenanalyse zeigte, dass die Bindung des Bromid-Gegenions an die ionische Cetylpyridinium-Mizelle stärker ist als die des Chlorid-Gegenions, was mit den Positionen der Chlorid- und Bromidionen in der Hoffmeister-Reihe und den Ergebnissen aus anderen Untersuchungen übereinstimmt.


*Correspondence address, Dr. K. Ismail, Professor (Retired), C/o. Department of Chemistry, North-Eastern Hill University, P.O. NEHU Campus, Shillong – 793022, India, E-Mail:

Dr. Teiborlang Mukhim received his Ph.D. degree in Chemistry from the North-Eastern Hill University, Shillong, India in 2010. Presently he is working at the Department of Chemistry, Lady Keane College, Shillong, India as Assistant Professor.

Dr. Kochi Ismail retired as Professor of Chemistry in 2016 after working for 38 years in the Department of Chemistry, North-Eastern Hill University, Shillong, India. He received Ph.D. degree in Chemistry from Aligarh Muslim University, Aligarh, India in 1976. He was Alexander von Humboldt research fellow (1985 and 1993) at the Institut für Physikalishe Chemie und Elektrochemie, Universität Karlsruhe, Germany. His research interests include molten salt systems, supercooling systems, and surfactant systems.


References

1. Muller, N. and Birkhahn, R. H.: Investigation of micelle structure by fluorine magnetic resonance. II. Effects of temperature changes, added electrolyte, and counterion size, J. Phys. Chem.72 (1968) 583588. 10.1021/j100848a033Search in Google Scholar

2. Ikeda, S., Hayashi, S. and Imae, T.: Rodlike micelles of sodium dodecyl sulfate in concentrated sodium halide solutions, J. Phys. Chem.85 (1981) 106112. 10.1021/j150601a024Search in Google Scholar

3. Ranganathan, R., Okano, L. T., Yihwa, C., Alonso, E. O. and Quina, F. H.: Salt effects on the dynamics of incorporation of organic co-ions into micelles, J. Phys. Chem. B103 (1999) 19771981. 10.1021/jp9839549Search in Google Scholar

4. Umlong, I. M. and Ismail, K.: Micellization of AOT in aueous sodium chloride, sodium acetate, sodium propionate and sodium butyrate media. A case of two different concentration regions of counter ion binding, J. Colloid. Interface Sci.291 (2005) 529536. PMid:15975587; 10.1016/j.jcis.2005.05.003Search in Google Scholar PubMed

5. Thapa, U., Ray, D., Dey, J., Sultana, N., Aswal, V. K. and Ismail, K.: Influnence of hydrotropic co-ions on the shape transitions of sodium dioctylsulfosuccinate aggregates in aqueous medium, RSC. Adv.5 (2015) 4595645964. 10.1039/c5ra04151aSearch in Google Scholar

6. Paul, B. C., Islam, S. S. and Ismail, K.: Effect of acetate and propionate co-ions on the micellization of sodium dodecyl sulfate in water, J. Phys. Chem. B102 (1998) 78077812. 10.1021/jp9812381Search in Google Scholar

7. Umlong, I. M. and Ismail, K.: Micellization behavior of sodium dodecyl sulfate in different electrolyte media, Colloids Surf A299 (2007) 814. 10.1016/j.colsurfa.2006.11.010Search in Google Scholar

8. Aswal, V. K. and Goyal, P. S.: Counterions in the growth of ionic micelles in aqueous electrolyte solutions: A small-angle neutron scattering study, Phys. Rev. E61 (2000) 29472953. 10.1103/PhysRevE.61.2947Search in Google Scholar

9. Aswal, V. K. and Goyal, P. S.: Selective counterion condensation in ionic micellar solutions, Phys. Rev. E67 (2003) 051401. PMid:12786146; 10.1103/PhysRevE.67.051401Search in Google Scholar PubMed

10. Aswal, V. K., Kohlbrecher, J., Goyal, P. S., Amenitsch, H. and Bernstorff, S. J.: Counterion condensation on charged micelles in an aqueous electrolyte solution as studied with combined small-angle neutron scattering and small-angle x-ray scattering, Phys. Condens. Matter18 (2006) 1139911410. 10.1088/0953-8984/18/50/001Search in Google Scholar

11. Varade, D., Joshi, T., Aswal, V. K., Goyal, P. S., Hassan, P. A. and Bahadur, P.: Effect of salt on the micelles of cetyl pyridinium chloride, Colloids Surf A259 (2005) 95101. 10.1016/j.colsurfa.2005.02.018Search in Google Scholar

12. Corrin, M. L. and Harkins, W. D.: The Effect of Salts on the Critical Concentration for the Formation of Micelles in Colloidal Electrolytes, J. Am. Chem. Soc.69 (1947) 683688. PMid:20289458; 10.1021/ja01195a064Search in Google Scholar PubMed

13. Tamaki, K.: The surface activity of tetrabutylammonium halides in the aqueous solutions, Bull. Chem. Soc. Jpn.40 (1967) 3841. 10.1246/bcsj.40.38Search in Google Scholar

14. Mata, J., Varade, D., Ghosh, G. and Bahadur, P.: Effect of tetrabutylammonium bromide on the micelles of sodium dodecyl sulfate, Colloids Surf. A245 (2004) 6973. 10.1016/j.colsurfa.2004.07.009Search in Google Scholar

15. Kumar, S., Sharma, D. and Kabir-ud-Din: Cloud point phenomenon in anionic surfactant+quaternary bromide systems and its variation with additives, Langmuir16 (2000) 68216824. 10.1021/la000452pSearch in Google Scholar

16. Kumar, S., Aswal, V. K.Naqvi, A. Z., Goyal, P. S. and Kabir-ud-Din: Cloud point phenomenon in ionic micellar solutions: A SANS study, Langmuir17 (2001) 25492551. 10.1021/la001215pSearch in Google Scholar

17. Kumar, S., Sharma, D., Khan, Z. A. and Kabir-ud-Din: Occurrence of cloud points in sodium dodecyl sulfate–tetra-n-butylammonium bromide system, Langmuir17 (2001) 58135816. 10.1021/la001215pSearch in Google Scholar

18. Mitra, D., Chakraborty, I., Bhattacharya, S. C. and Moulik, S. P.: Interfacial and solution properties of tetraalkylammonium bromides and their sodium dodecyl sulfate interacted products: A detailed physicochemical study, Langmuir23 (2007) 30493061. PMid:17302444; 10.1021/la062830hSearch in Google Scholar PubMed

19. Mukhim, T., Dey, J., Das, S. and Ismail, K.: Aggregation and adsorption behavior of cetylpyridinium chloride in aqueous sodium salicylate and sodium benzoate solutions, J. Colloid. Interface Sci.350 (2010) 511515. PMid:20673910; 10.1016/j.jcis.2010.06.070Search in Google Scholar PubMed

20. Shanks, P. C. and Franses, E. I.: Estimation of micellization parameters of aqueous sodium dodecyl sulfate from conductivity data, J. Phys. Chem.96 (1992) 17941805. 10.1021/j100183a055Search in Google Scholar

21. Dev, S., Gunaseelan, K. and Ismail, K.: Micellization of Surfactants in acetamide melt, Langmuir16 (2000) 61106113. 10.1021/la9914662Search in Google Scholar

22. Gunaseelan, K. and Ismail, K.: Estimation of micellization parameters of sodium dodecyl sulfate in water+1-butanol using the mixed electrolyte model for molar conductance, J. Colloid Interface Sci.258 (2003) 110115. 10.1016/S0021-9797(02)00065-6Search in Google Scholar

23. Gunaseelan, K., Umlong, I. M., Mukhim, T. and Ismail, K.: Electrical conductance behavior of oil-in-water microemulsions stabilized by sodium dodecyl sulfate and 1-butanol, Langmuir19 (2003) 72767281. 10.1021/la034899kSearch in Google Scholar

24. Dey, J., Thapa, U. and Ismail, K.: Aggregation and adsorption of sodium dioctylsulfosuccinate in aqueous ammonium chloride solution. Role of mixed counterions J. Colloid Interface Sci.367 (2012) 305310. PMid:22126703; 10.1016/j.jcis.2011.10.055Search in Google Scholar

25. Horvath, A. L.: Handbook of Aqueous Electrolyte Solutions, Ellis Horwood, West Sussex (1985).Search in Google Scholar

26. Kunz, W.: Specific ion effects in colloidal and biological systems, Curr. Opin. Colloid Interface Sci.15 (2010) 3439. 10.1016/j.cocis.2009.11.008Search in Google Scholar

27. Mukhim, T. and Ismail, K.: Micellization of cetylpyridinium chloride in aqueous lithium chloride, sodium chloride and potassium chloride media J. Surf. Sci. Techno.21 (2005) 113127.Search in Google Scholar

28. Loughlin, J. A. and Romsted, L. S.: A new method for estimating counter-ion selectivity of a cationic association colloid: Trapping of interfacial chloride and bromide counter-ions by reaction with micellar bound aryldiazonium salts, Colloids Surf.48 (1990) 123137. 10.1016/0166-6622(90)80223-QSearch in Google Scholar

29. Mancini, G., Schiavo, C. and Cerichelli, G.: Trapping of counterions and water on the surface of cationic micelles, Langmuir12 (1996) 35673573. 10.1021/la951039ySearch in Google Scholar

Received: 2018-03-21
Accepted: 2018-05-04
Published Online: 2019-01-24
Published in Print: 2019-01-21

© 2019, Carl Hanser Publisher, Munich

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.3139/113.110598/html
Scroll to top button