Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 13, 2019

Study of Zinc-glycylglycine Complex with Ninhydrin in Aqueous and Cationic Micellar Media: A Spectrophotometric Technique

Untersuchung des Zink-Glycylglycin-Komplexes mit Ninhydrin in wässrigen und kationischen mizellaren Medien: Eine spektrophotometrische Technik
Dileep Kumar and Malik Abdul Rub

Abstract

Studies of the interaction between the zinc-peptide complex ([Zn(II)-Gly-Gly]+) and ninhydrin in aqueous and CTAB surfactant media were executed by the means of UV-visible spectrophotometry. The reaction rates (kobs and kψ) were determined in both media by varying different parameters such as pH, temperature and the concentration of the reactants and CTAB. The micellar binding constants and activation parameters were also calculated. The catalytic activity in the CTAB medium was found to be better than in the aqueous medium on the title reaction. The catalysis by CTAB is treated quantitatively by applying the model of the kinetic pseudo-phase of the micelle. Variation of the rate constant with the change of the CTAB concentration was used for the calculation of several kinetic parameters such as the binding constants (KB and KNin) and the micellar rate constant km. On basis of the experimental results, a probable mechanism is proposed.

Kurzfassung

Untersuchungen zur Wechselwirkung zwischen dem Zink-Peptid-Komplex ([Zn(II)-Gly-Gly]+) und Ninhydrin in wässrigen und CTAB-Tensidmedien wurden mittels UV-Vis-Spektrophotometrie durchgeführt. Die Reaktionsgeschwindigkeiten (kobs und kψ) wurden in beiden Medien durch Variieren verschiedener Parameter, wie pH, Temperatur und der Konzentration der Reaktanten und CTAB, bestimmt. Die Mizellenbindungskonstanten und Aktivierungsparameter wurden ebenfalls berechnet. Die katalytische Aktivität im CTAB-Medium erwies sich bei der Titelreaktion als besser als im wässrigen Medium. Die Katalyse durch CTAB wird quantitativ unter Anwendung des Modells der kinetischen Pseudophase der Mizelle behandelt. Die Variation der Geschwindigkeitskonstante mit der Änderung der CTAB-Konzentration wurde zur Berechnung mehrerer kinetischer Parameter verwendet, wie der Bindungskonstanten KB und KNin und der Mizellengeschwindigkeitskonstante km. Auf der Grundlage der experimentellen Ergebnisse wird ein wahrscheinlicher Mechanismus vorgeschlagen.


Correspondence address, Dr. Dileep Kumar, Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam, E-Mail:

References

1. Ryu, J. Y., Hong, D. J. and Lee, M.: Aqueous self-assembly of aromatic rod building blocks, Chem. Commun. (2008) 10431054. PMid:18292887; 10.1039/B713737KSearch in Google Scholar PubMed

2. Kumar, D., Rub, M. A., Azum, N. and Asiri, A. M.: Mixed Micellization study of ibuprofen (sodium salt) and cationic surfactant (conventional as well as gemini), J. Phys. Org. Chem.31 (2018) e3730. 10.1002/poc.3730Search in Google Scholar

3. Kumar, D., Azum, N., Rub, M. A. and Asiri, A. M.: Aggregation behavior of sodium salt of ibuprofen with conventional and gemini surfactant, J. Mol. Liq.262 (2018) 8696. 10.1016/j.molliq.2018.04.053Search in Google Scholar

4. Kumar, D., Hidayathulla, S. and Rub, M. A.: Association behavior of a mixed system of the antidepressant drug imipramine hydrochloride and dioctyl sulfosuccinate sodium salt: effect of temperature and salt, J. Mol. Liq.271 (2018) 254264. 10.1016/j.molliq.2018.08.147Search in Google Scholar

5. Seo, S. H., Chang, J. Y. and Tew, G. N.: Self-assembled vesicles from an amphiphilic ortho-phenylene ethynylene macrocycle, Angew. Chem. Int. Ed.45 (2006) 75267530. PMid:17001727; 10.1002/anie.200600688Search in Google Scholar PubMed

6. Dwars, T., Paetzold, E. and Oehme, G.: Reactions in micellar systems, Angew. Chem. Int. Ed.44 (2005) 71747199. PMid:16276555; 10.1002/anie.200501365Search in Google Scholar PubMed

7. Esumi, K. and Ueno, M.: Structure-Performance Relationship in Surfactants, 2nd ed., edited by Esumi, K. and Ueno, M., New York, Marcel Dekker (2003). ISBN: 0-8247-4044-0. 10.1201/9780203911518Search in Google Scholar

8. Kumar, D. and Rub, M. A.: Effect of sodium taurochlolate on aggregation behavior of amphiphilic drug solution, Tenside Surf. Deterg.52 (2015) 464472. 10.3139/113.110398Search in Google Scholar

9. Rub, M. A., Azum, N., Kumar, D., Asiri, A. M. and Marwani, H. M.: Micellization and microstructural studies between amphiphilic drug ibuprofen with non-ionic surfactant in aqueous urea solution, J. Chem. Thermodyn.74 (2014) 91102. 10.1016/j.jct.2014.01.005Search in Google Scholar

10. Rosen, M. J. and Tracy, D. J.: Gemini surfactants, J. Surf. Deterg.1 (1998) 547554. 10.1007/s11743-998-0057-8Search in Google Scholar

11. Rub, M. A., Khan, F., Kumar, D. and Asiri, M. A.: Study of mixed micelles of promethazine hydrochloride (PMT) and nonionic surfactant (TX100) mixtures at different temperature and composition, Tenside Surf. Deterg.52 (2015) 236244. 10.3139/113.110371Search in Google Scholar

12. Kumar, D. and Rub, M. A.: Aggregation behavior of amphiphilic drug promazine hydrochloride and sodium dodecylbenzenesulfonate mixtures under the influence of NaCl/urea at various concentration and temperatures, J. Phys. Org. Chem.29 (2016) 394405. 10.1002/poc.3546Search in Google Scholar

13. Khan, M. N.: Micellar Catalysis; Surfactant Science Series, vol. 133, New York, CRC Press (2006). ISBN: 9781574444902. 10.1201/9781420015843Search in Google Scholar

14. Friedman, F.: Applications of the ninhydrin reaction for analysis of amino acids, peptides, and proteins to agricultural and biomedical sciences, J. Agric. Food Chem.52 (2004) 385406. PMid:14759124; 10.1021/jf030490pSearch in Google Scholar

15. Joullie, M. M., Thompson, T. R. and Nemeroff, N. H.: Ninhydrin and ninhydrin analogs. Syntheses and applications, Tetrahedron47 (1991) 87918830. 10.1016/S0040-4020(01)80997-2Search in Google Scholar

16. McCaldin, D. J.: The chemistry of ninhydrin, Chem. Rev.60 (1960) 3951. 10.1021/cr60203a004Search in Google Scholar

17. Kumar, D. and Rub, M. A.: Studies of interaction between ninhydrin and gly-leu dipeptide: influence of cationic surfactants (m-s-m type gemini), J. Mol. Liq.269 (2018) 17. 10.1016/j.molliq.2018.08.002Search in Google Scholar

18. Kumar, D., Neo, K. E. and Rub, M. A.: Dipeptide glycyl-glycine (gly-gly)–ninhydrin reaction: effect of alkanediyl-α,ωbis(dimethylcetylammonium bromide) (16-s-16, s=4, 5, 6) gemini surfactants on the reaction rate. Tenside Surf. Deterg.53, (2016) 168175. 10.3139/113.110422Search in Google Scholar

19. Kumar, D., Rub, M. A., Akram, M. and Kabir-ud-Din: Effect of gemini (alkanediyl-α,ω-bis(dimethylcetylammonium bromide)) (16-s-16, s=4, 5, 6) surfactants on the interaction of ninhydrin with chromium-glycylphenylalanine, Spectrochim. Acta A132 (2014) 288294. PMid:24878435; 10.1016/j.saa.2014.05.002Search in Google Scholar PubMed

20. Kabir-ud-Din and Siddiqui, U. S.: Catalytic role of gemini surfactant micelles in the ninhydrin–l-isoleucine reaction, Colloid J.72 (2010) 1422. 10.1134/S1061933X10010035Search in Google Scholar

21. Kabir-ud-Din, Bano, M. and Khan, I. A.: Reaction between l-glutamic acid and ninhydrin: role of organic solvents and CTAB micelles, J. Surface Sci. Technol.18 (2002) 113128. 10.18311/jsst/2002/1790Search in Google Scholar

22. Kabir-ud-Din and Fatma, W.: Micelle catalysed reaction of ninhydrin and dl-tryptophan, J. Surface Sci. Technol.18 (2002) 129138. 10.18311/jsst/2002/1791Search in Google Scholar

23. Khan, I. A., Bano, M. and Kabir-ud-Din: Micellar and solvent effects on the rate of reaction between l-tyrosine and ninhydrin, J. Disp. Sci. Technol.31 (2010) 177182. 10.1080/01932690903110269Search in Google Scholar

24. Goddard, E. D., and Ananthapadmanabhan, K. P.: Interactions of Surfactants with Polymers and Proteins, edited by Goddard, E. D., and Ananthapadmanabhan, K.P., Boca Raton, FL, CRC Press (1993). 10.1080/01932699408943565Search in Google Scholar

25. Sjoblom, J.: Food Emulsions, edited by Sjoblom, J., New York, Marcel Dekker (1996). ISBN: 0-8247-4696-1.Search in Google Scholar

26. Jencks, W. P.: Catalysis in Chemistry and Enzymology, New York, McGraw-Hill (1969). 10.1021/ed047pA860.2Search in Google Scholar

27. Ganapathy, V., Ramachandramurthy, B. and Radhakrishnan, A. N.: Distinctive test with copper(II)-ninhydrin reagent for small α-peptides separated by paper chromatography, J. Chromatogr. A213 (1981) 307316. 10.1016/S0021-9673(00)81913-5Search in Google Scholar

28. Kumar, D. and Rub, M. A.: Kinetic study of nickel-glycylglycine with ninhydrin in alkanediyl-α,ω-gemini (m-s-m type) surfactant system, J. Mol. Liq.240 (2017) 253257. 10.1016/j.molliq.2017.05.088Search in Google Scholar

29. Kumar, D. and Rub, M. A.: Synthesis and characterization of dicationic gemini surfactant micelles and their effect on the rate of ninhydrin–copper-peptide complex reaction, Tenside Surf. Deterg.55 (2018) 7884. 10.3139/113.110535Search in Google Scholar

30. Britton, H. T. S.: Hydrogen Ions, vol. 1, London, Chapman and Hall (1942). 10.1002/500-04-843-15Search in Google Scholar

31. Mukerjee, P. and Mysels, K. J.: Critical Micelle Concentrations of Aqueous Surfactant Systems, Washington, DC, Superintendent of Documents (1971). 10.1002/jps.2600610254Search in Google Scholar

32. Bakshi, M. S. and Kaur, G.: Effects of glycol additives on the mixed micelle formation by hexadecyltrimethylammonium bromide+dodecylpyridinium chloride mixtures, J. Mol. Liq.88 (2000) 15. 10.1016/S0167-7322(00)00134-3Search in Google Scholar

33. Bakshi, M. S.: Influence of alkoxyethanols on the mixed micelle formation by hexadecyltrimethylammonium bromide and tetradecyltrimethylammonium bromide surfacatant mixtures, Colloid Polym. Sci.278 (2000) 1155. 10.1007/s003960000Search in Google Scholar

34. Akram, M., Zaidi, N. H. and Kabir-ud-Din: Effect of cationic micelles on the kinetics of interaction of [Cr(III)-Gly-Gly]2+ with ninhydrin, Acta Phys.-Chim. Sin.24 (2008) 22072213. 10.1016/S1872-1508(08)60084-4Search in Google Scholar

35. Kumar, D., Rub, M. A., Akram, M. and Kabir-ud-Din: Interaction of chromium(III) complex of glycylphenylalanine with ninhydrin in aqueous and cetyltrimethylammonium bromide (CTAB) micellar media, Tenside Surf. Deterg.51 (2014) 157163. 10.3139/113.110296Search in Google Scholar

36. Kumar, D., Neo, K. E. and Rub, M. A.: Interaction between copper(II) complex of glycylphenylalanine and ninhydrin in aqueous–micellar solutions of gemini surfactants, J. Mol. Liq.212 (2015) 872878. 10.1016/j.molliq.2015.10.045Search in Google Scholar

37. Kumar, D., Neo, K. E. and Rub, M. A.: Effect of alkanediyl-α,ω-type cationic dimeric (gemini) surfactants on the reaction rate of ninhydrin with [Cu(II)-Gly-Tyr]+ complex, J. Surf. Deterg.19 (2016) 101109. 10.1007/s11743-015-1754-ySearch in Google Scholar

38. Bunton, C. A.: Reactivity in aqueous association colloids. Descriptive utility of the pseudophase model, J. Mol. Liq.72 (1997) 231249. 10.1016/S0167-7322(97)00040-8Search in Google Scholar

39. Bunton, C. A. and Savelli, G.: Organic reactivity in aqueous micelles and similar assemblies, Adv. Phys. Org. Chem.22 (1987). 101016/S0065-3160(08)60169-0Search in Google Scholar

40. Menger, F. M. and Portnoy, C. E.: Chemistry of reactions proceeding inside molecular aggregates, J. Am. Chem. Soc.89 (1967) 46984703. 10.1021/ja00994a023Search in Google Scholar

41. Bunton, C. A.: Reaction kinetics in aqueous surfactant solutions. Catal. Rev. Sci. Eng.20 (1979) 156. 10.1080/03602457908065104Search in Google Scholar

42. Romsted, L. S.: Micellization, Solubilization and Microemulsions, vol. 2, edited by MittalK. L., New York, Plenum Press (1997). 10.1007/978-4613-4157-4Search in Google Scholar

43. Lindemuth, P. M. and Bertrand, G. L.: Calorimetric observations of the transition of spherical to rodlike micelles with solubilized organic additives, J. Phys. Chem.97 (1993) 77697773. 10.1021/j100131a055Search in Google Scholar

44. Bunton, C. A. and Robinson, L.: Micellar effects upon the reaction of p-nitrophenyl diphenyl phosphate with hydroxide and fluoride ions, J. Org. Chem.34 (1969) 773780. 10.1021/jo01256a002Search in Google Scholar

45. Bunton, C. A., Carrasco, N., Huang, S.K., Paik, C. H. and Romsted, L. S.: Reagent distribution and micellar catalysis of carbocation reactions, J. Am. Chem. Soc.100 (1978) 54205425. 10.1021/ja00485a028Search in Google Scholar

46. Menger, F. M.: The structure of micelles, Acc. Chem. Res.12 (1979) 111117. 10.1021/ar50136a001Search in Google Scholar

47. Tascioglu, S.: Micellar solutions as reaction media, Tetrahedron, 52 (1996) 1111311152. 10.1016/0040-4020(96)00669-2Search in Google Scholar

48. Kumar, D. and Rub, M. A.: Interaction of ninhydrin with chromium-glycylglycine complex in the presence of dimeric gemini surfactants, J. Mol. Liq.250 (2018) 329334. 10.1016/j.molliq.2017.11.172Search in Google Scholar

49. Khan, F., Rub, M. A., Azum, N., Kumar, D. and Asiri, A. M.: Interaction of an amphiphilic drug and sodium bis(2-ethylhexyl)sulfosuccinate at low concentrations in the absence and presence of sodium chloride, J. Sol. Chem.44 (2015) 19371961. 10.1007/s10953-015-0386-1Search in Google Scholar

50. Kumar, D. and Rub, M. A.: Effect of anionic surfactant and temperature on micellization behavior of promethazine hydrochloride drug in absence and presence of urea, J. Mol. Liq.238 (2017) 389396. 10.1016/j.molliq.2017.05.027Search in Google Scholar

Received: 2018-09-10
Accepted: 2018-11-19
Published Online: 2019-07-13
Published in Print: 2019-07-17

© 2019, Carl Hanser Publisher, Munich

Downloaded on 29.1.2023 from https://www.degruyter.com/document/doi/10.3139/113.110635/html
Scroll Up Arrow