Accessible Unlicensed Requires Authentication Published by De Gruyter January 23, 2020

Experimental and Computational Study of Ecofriendly Synthesize d Imine Cationic Surfactants as Corrosion Inhibitors for Carbon Steel in 1 M HCl

Experimentelle und computerge stützte Untersuchung von umweltfreundlich synthetisierten kationischen Imintensiden als Korrosionsinhibitoren für Kohlenstoffstahl in 1 M HCl
Eman A. Ghiaty, Dalia E. Mohamed, Emad A. Badr, Elshafie A. M. Gad, Elsayed A. Soliman and Ismail A. Aiad


Most research interests focused on the development of non-toxic and environmentally green corrosion inhibitors. In this work, three environment friendly corrosion inhibitors based on cinnamaldehyde named N,N-dimethyl-N-(2-((3-phenylallylidene) amino)ethyl)octan-1-aminiumbromide (PhAEO), N,N-dimethyl-N-(2-((3-phenyl allylidene) amino)ethyl)decan-1-aminiumbromide (PhAED) and N,N-dimethyl-N-(2- ((3-phenylallylidene)amino)ethyl)dodecan-1-aminiumbromide (PhAEDD) were prepared. The chemical structures of the prepared green corrosion inhibitors were confirmed by FTIR and 1H-NMR. Their surface activities were studied using different surface parameters. The corrosi on inhibition efficiency of these compounds in 1 M hydrochloric acid on carbon steel was investigated chemically using weight loss method at varing temperatures (30, 45, and 60°C) and electrochemically at 30°C using potentiodynamic polarization measurements and electrochemical impedance spectroscopy. The carbon steel surface was characte rized by Scanning Electron Microscopy. The results show that the prepared compounds have a significant inhibiting effect on the corrosion of carbon steel and protection efficiencies up to 92%. These results were supported by theoretical studies using Density Functional Theory (DFT), which was used to calculate some quantum chemical descriptors, particularly the energy of Highest Occupied Molecular Orbital (EHOMO), Lowest Unoccupied Molecular Orbital (ELUMO) and the energy band gap ΔEgap. Fukui indices f+ and f for local nucleophilic and electrophilic attacks were considered. The theoretical results show that the behavior of the energy gap and adsorption energy is consistent with the sequence of the percent inhibition efficiency obtained by chemical and electrochemical measurements.


Die meisten Forschungsinteressen konzentrierten sich auf die Entwicklung ungiftiger und umweltfreundlicher Korrosionsinhibitoren. In dieser Arbeit wurden drei umweltfreundliche Korrosionsinhibitoren auf der Basis von Zimtaldehyd hergestellt: N,N-Dimethyl-N-(2-((3-Phenylallyliden)-amino)-ethyl)-octan-1-aminiumbromid (PhAEO); N,N-Dimethyl-N-(2-((3-Phenylall yliden)-amino)-ethyl)-decan-1-aminiumbromid (PhAED) und N,N-Di methyl-N-(2-((3-Phenylallyliden)-amino)-ethyl)-dodecan-1-aminiumbromid (PhAEDD). Die chemischen Strukturen der hergestellten grünen Korrosionsi nhibitoren wurden mit FTIR und 1H-NMR bestätigt. Zur Bestimun g ihrer Oberflächenaktivitäten wurden verschiedene Oberflächenparameter bestimmt. Die Korrosionsinhibierungseffizienz dieser Verbindungen in 1 M Salzsäure auf Kohlenstoffstahl wurde chemisch mit der Gewichtsverlustmethode bei verschiedenen Temperaturen (30°C, 45°C und 60°C) sowie elektrochemisch bei 30°C mit potentiodynamischen Polarisationsmessungen und der elektrochemischen Impedanzspektroskopie untersucht. Die Kohlenstoffstahloberfläche wurde mit einem Rasterelektronenmikrosk op charakterisiert. Die Ergebnisse zeigen, dass die hergestellten Verbindunge n eine signifikante Hemmwirkung auf die Korrosion von Kohlenstoffstahl und Schutzwirkungsgrade von bis zu 92% haben. Diese Ergebnisse wurden durch theoretische Studien unter Verwendung der Density Functional Theory (DFT) untermauert, mit deren Hilfe einige quantenchemische Deskriptore n, insbesondere die Energie des höchsten besetzten Molekülorbitals (EHOMO), des niedrigsten nicht besetzten Molekülorbitals (ELUMO) und die Energiebandlücke ΔEgap, berechnet wurden. Fukui-Indizes f+ und f für lokale nucleophile und elektrophile Attacken wurden berücksicht igt. Die theoretischen Ergebnisse zeigen, dass das Verhalten der Energielücke und der Adsorptionsenergie mit der Abfolge der prozentualen Inhibitions effizienz übereinstimmt, die durch chemische und elektrochemische Messungen erhalten wird.

Correspondence address, Assoc. Prof. Dr. Dalia E. Mohamed, Egyptian Petroleum Research Institute, 11727, Nasr City, Cairo, Egypt, E-Mail:

Eman Abdalrahman Ghiaty received her B.Sc. from Zagazig University (2008) and M.Sc. from Zagazig University (2013). She is presently researcher assistant at the Egyptian Petroleum Research Institute (Surfactants Laboratory). Her interests are focused on synthesis, properties and applications of new surfactants in several fields.

Dalia E. Mohamed received her B.Sc. and M.Sc. from Cairo University and Ph.D. from Ain Shams University. She is currently associate professor at the Egyptian Petroleum Research Institute (Surfactants Laboratory). Her research interests are in synthesis, properties and applications of new surfactants.

Emad Abdel Atty badr received the B.Sc. in Chemistry, 1998, Chemistry Department, Al-Azhar University and M.S c. in Physical Chemistry, 2002, Al-Azhar University and PhD in surfactant Science, 2010, Chemistry Department, Faculty of Science, Al-Azhar University. In 2007, he joined the Department of Petrochemicals surfactant Laboratory, Egyptian Petroleum Research Institute, as Assistant Researcher, and in 2010 became Researcher, surfactant Laboratory, Department of Petrochemicals. Since December 2015 till now Associate Professor, surfactant Laboratory, Department of Petrochemicals, Egyptian Petroleum Research Institute. He published 20 papers in fields of surfactant and corrosion inhibitor.

Elshafie A. Gad, Professor of Petrochemicals, Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt. My interests are surfactants applications, QsPr, computat ional chemistry and recently solid state kinetics.

El-Sayed Ahmed Soliman received his Ph.D. in organic chemistry from Ain Shams University in 1974. He has been Head of the Chemistry Department (Faculty of Science) at Ain Shams University since 2006, as well as a Professor in Houria Boume'die ne University for Science and Technology, Institute of Chemistry, Algeria, from 1986 to 1990.

Ismail Aiad received his Ph.D in 1998 in physical chemistry from the College of Science, Zagazig University, Egypt. He is currently a Professo r and the vice head of the Petrochemicals Department at the Egyptian Petroleu m Research Institute, Nasr City, Cairo, Egypt. He is a member of the board of directors of the Chemical Services and Development Center for Oil Field Chemicals, and consults for different petroleum companies.


1 Kannan, B., Eng, J. M. S., Rahuma, M. N., and M. B. K.: Corrosion in Oil and Gas Industry: A Perspective on Corrosion Inhibitors. J. Mater. Sci. Eng., 3 (2014) 4172. 10.4172/2169-0022.1000e110Search in Google Scholar

2 Finšgar, M., and Jackson, J.: Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: A review. Corros. Sci., 86 (2014) 1741. 10.1016/j.corsci.2014.04.044Search in Google Scholar

3 Heakal, F. E. and Elkholy, A. E.: Gemini surfactants as corrosion inhibitors for carbon steel. J. Mol. Liq., 230 (2017) 395407. 10.1016/j.molliq.2017.01.047Search in Google Scholar

4 Zakaria, K., Negm, N. A., Khamis, E. A., and Badr, E. A.: Electrochemical and quantum chemical studies on carbon steel corrosion protection in 1 M H 2 SO 4 using new eco-friendly Schiff base metal complexes. J. Taiwan Inst. Chem. Eng., 61 (2016) 316326. 10.1016/j.jtice.2015.12.021Search in Google Scholar

5 Yen, T.-B. and Chang, S.-T.: Synergistic effects of cinnamaldehyde in combination with eugenol against wood decay fungi. Bioresour. Technol. 99 (2008) 232236. PMid:17196382; 10.1016/j.biortech.2006.11.022Search in Google Scholar

6 Obasi, N. L., Kaior, G. U., Ibezim, A., Ochonogor, A. E., Rhyman, L., Uahengo, V., Lutter, M., Jurkschat, K. and Ramasami, P.: Synthesis, characterization, antimicrobial screening and in silico studies of Schiff bases derived from trans-para-methoxycinnamaldehyde. J. Mol. Struct. 1149 (2017) 816. 10.1016/j.molstruc.2017.07.097Search in Google Scholar

7 Growcock, F. B. and Frenier, W. W.: Kinetics of Steel Corrosion in Hydrochloric Acid Inhibited with trans-Cinnamaldehyde. J. Electrochem. Soc. 135 (1988) 817823. 10.1149/1.2095783Search in Google Scholar

8 Growcock, F. B. and Lopp, V. R.: Film formation on steel in cinnamaldehyde-inhibited hydrochloric acid. Corrosion. 44 (1988) 248254. 10.5006/1.3583933Search in Google Scholar

9 Hugel, G.: Corrosion Inhibitors–Study of their Activity Mechanism. In: 1st European Symposium on Corrosion Inhibitors (1960).Search in Google Scholar

10 Cabello, G., Funkhouser, G. P., Cassidy, J., Kiser, C. E., Lane, J. and Cuesta, A.: CO and trans-cinnamaldehyde as corrosion inhibitors of I825, L80–13Cr and N80 alloys in concentrated HCl solutions at high pressure and temperature. Electrochim. Acta. 97 (2013) 19. 10.1016/j.electacta.2013.03.011Search in Google Scholar

11 Adabiardakani, A.: Cinnamaldehyde Schiff Base Derivatives: A Short Review (2012) 472476.Search in Google Scholar

12 Shaban, S. M., Saied, A., Tawfik, S. M. and Aiad, I.: Journal of Industrial and Engineering Chemistry Corrosion inhibition and Biocidal effect of some cationic surfactants based on Schiff base. J. Ind. Eng. Chem. 19 (2013) 20042009. 10.1016/j.jiec.2013.03.013Search in Google Scholar

13 Abd El-Lateef, H. M. and Tantawy, A. H.: Synthesis and evaluation of novel series of Schiff base cationic surfactants as corrosion inhibitors for carbon steel in acidic/chloride media: experimental and theoretical investigations. RSC Adv. 6 (2016) 86818700. 10.1039/C5RA21626ESearch in Google Scholar

14 Free, M. L.: Understanding the effect of surfactant aggregation on corrosion inhibition of mild steel in acidic medium. Corros. Sci., 44 (2002) 28652870. 10.1016/S0010-938X(02)00080-XSearch in Google Scholar

15 Soliman, S. A., Metwally, M. S., Selim, S. R., Bedair, M. A. and Abbas, M. A.: Corrosion inhibition and adsorption behavior of new Schiff base surfactant on steel in acidic environment: Experimental and theoretical studies. J. Ind. Eng. Chem. 20 (2014) 43114320. 10.1016/j.jiec.2014.01.038Search in Google Scholar

16 Kabanda, M. M., Murulana, L. C., Ozcan, M., Karadag, F., Dehri, I., Obot, I. B. and Ebenso, E. E.: Quantum Chemical Studies on the Corrosion Inhibition of Mild Steel by Some Triazoles and Benzimidazole Derivatives in Acidic Medium. Int. J. Electrochem. Sci., 7 (2012) 50355056.Search in Google Scholar

17 Obot, I. B., Gasem, Z. M. and Umoren, S. A.: Understanding the mechanism of 2-mercaptobenzimidazole adsorption on Fe (110), Cu (111) and Al (111) surfaces: DFT and molecular dynamics simulations approaches. Int. J. Electrochem. Sci., 9 (2014) 23672378.Search in Google Scholar

18 Khaled, K. F.: Studies of iron corrosion inhibition using chemical, electrochemical and computer simulation techniques. Electrochim. Acta. 55 (2010) 65236532. 10.1016/j.electacta.2010.06.027Search in Google Scholar

19 Aiad, I. A., Tawfik, S. M., El-Shafie, M. and Rhman, A. L. A.: 4-Aminoantipyrine derived cationic surfactants: Synthesis, characterization, surface activity and screening for potential antimicrobial activities. Egypt. J. Pet. (2017) 07. 10.1016/j.ejpe.2017.05.006Search in Google Scholar

20 Zhu, S., Liu, L. and Cheng, F.: Influence of spacer nature on the aggregation properties of anionic gemini surfactants in aqueous solutions. J. Surfactants Deterg. 14 (2011) 221225. 10.1007/s11743-010-1226-3Search in Google Scholar

21 Mohamed, D. E., Habib, A. O. and Aiad, I.: Enhancing the surface properties of some amine alginate salts with cationic surfactant. Tenside Surfactants Deterg. 51 (2014) 1116. 10.3139/113.110280Search in Google Scholar

22 Bai, G., Wang, J., Yan, H., Li, Z. and Thomas, R. K.: Thermodynamics of molecular self-assembly of cationic gemini and related double chain surfactants in aqueous solution. J. Phys. Chem. B. 105 (2001) 31053108. 10.1021/jp0043017Search in Google Scholar

23 Negm, N. A., Kandile, N. G., Aiad, I. A. and Mohammad, M. A.: New eco-friendly cationic surfactants: Synthesis, characterization and applicability as corrosion inhibitors for carbon steel in 1 N HCl. Colloids Surfaces A Physicochem. Eng. Asp. 391 (2011) 224233. 10.1016/j.colsurfa.2011.09.032Search in Google Scholar

24 Mohamed, D. E., Abbas, M. A., Fatthallah, N. A. and Mishrif, M. R.: Corrosion inhibition and antimicrobial activity of some ethoxylated sulphanilamides on carbon steel in acidic medium. MSAIJ. 10 (2014) 5771.Search in Google Scholar

25 Aiad, I., Emam, D., El-Deeb, A. and Abd-Alrahman, E.: Novel imidazolium-based gemini surfactants: Synthesis, surface properties, corrosion inhibition and biocidal activity against sulfate-reducing bacteria. J. Surfactants Deterg. 16 (2013) 927935. 10.1007/s11743-013-1491-zSearch in Google Scholar

26 Shaban, S. M., Abd-Elaal, A. A. and Tawfik, S. M.: Gravimetric and electrochemical evaluation of three nonionic dithiol surfactants as corrosion inhibitors for mild steel in 1 M HCl solution. J. Mol. Liq. 216 (2016) 392400. 10.1016/j.molliq.2016.01.048Search in Google Scholar

27 Badr, E. A., Bedair, M. A. and Shaban, S. M.: Adsorption and performance assessment of some imine derivatives as mild steel corrosion inhibitors in 1.0 M HCl solution by chemical, electrochemical and computational methods. Mater. Chem. Phys. 219 (2018) 444460. 10.1016/j.matchemphys.2018.08.041Search in Google Scholar

28 Rekkab, S., Zarrok, H., Salghi, R., Zarrouk, A., Bazzi, L., Hammouti, B., Kabouche, Z., Touzani, R. and Zougagh, M.: Green corrosion inhibitor from essential oil of eucalyptus globulus (Myrtaceae) for C38 steel in sulfuric acid solution. J. Mater. Environ. Sci., 3 (2012) 613627.Search in Google Scholar

29 Bedair, M. A., Soliman, S. A. and Metwally, M. S.: Journal of Industrial and Engineering Chemistry Synthesis and characterization of some nonionic surfactants as corrosion inhibitors for steel in 1. 0 M HCl (Experimental and computational study). J. Ind. Eng. Chem. 41 (2016) 1022. 10.1016/j.jiec.2016.07.005Search in Google Scholar

30 Tang, L., Li, X., Si, Y., Mu, G. and Liu, G.: The synergistic inhibition between 8-hydroxyquinoline and chloride ion for the corrosion of cold rolled steel in 0.5 M sulfuric acid. Mater. Chem. Phys. 95 (2006) 2938. 10.1016/j.matchemphys.2005.03.064Search in Google Scholar

31 Badr, E. A.: Inhibition effect of synthesized cationic surfactant on the corrosion of carbon steel in 1 M HCl. J. Ind. Eng. Chem. 20 (2014) 33613366. 10.1016/j.jiec.2013.12.021Search in Google Scholar

32 Bensajjay, F., Alehyen, S., El Achouri, M. and Kertit, S.: Corrosion inhibition of steel by 1-phenyl 5-mercapto 1, 2, 3, 4-tetrazole in acidic environments (0.5 M H2SO4 and 1/3 M H3PO4). Anti-Corrosion Methods Mater. 50 (2003) 402409. 10.1108/00035590310501558Search in Google Scholar

33 Negm, N. A., Kandile, N. G., Badr, E. A. and Mohammed, M. A.: Gravimetric and electrochemical evaluation of environmentally friendly nonionic corrosion inhibitors for carbon steel in 1 M HCl. Corros. Sci., 65 (2012) 94103. 10.1016/j.corsci.2012.08.002Search in Google Scholar

34 Shaban, S. M., Aiad, I., Moustafa, A. H. and Aljoboury, O. H.: Some alginates polymeric cationic surfactants; surface study and their evaluation as biocide and corrosion inhibitors. J. Mol. Liq. 273 (2019) 164176. 10.1016/j.molliq.2018.10.017Search in Google Scholar

35 Hegazy, M. A., Rashwan, S. M., Kamel, M. M. and El Kotb, M. S.: Synthesis, surface properties and inhibition behavior of novel cationic gemini surfactant for corrosion of carbon steel tubes in acidic solution. J. Mol. Liq. 211 (2015) 126134. 10.1016/j.molliq.2015.06.05110.1016/j.molliq.2015.06.051Search in Google Scholar

36 Masroor, S., Mobin, M., Alam, M. J. and Ahmad, S.: The novel iminium surfactant p-benzylidene benzyldodecyl iminium chloride as a corrosion inhibitor for plain carbon steel in 1 M HCl: electrochemical and DFT evaluation. RSC Adv. 7 (2017) 2318223196. 10.1039/C6RA28426DSearch in Google Scholar

37 Aiad, I., El-Sukkary, M. M., Soliman, E. A., El-Awady, M. Y. and Shaban, S. M.: Inhibition of mild steel corrosion in acidic medium by some cationic surfactants. J. Ind. Eng. Chem. 20 (2014) 35243535. 10.1016/j.jiec.2013.12.045Search in Google Scholar

38 Migahed, M. A., Farag, A. A., Elsaed, S. M., Kamal, R., Mostfa, M. and El-bary, H. A.: Synthesis of a new family of Schiff base nonionic surfactants and evaluation of their corrosion inhibition effect on X-65 type tubing steel in deep oil wells formation water. Mater. Chem. Phys. 125 (2011) 125135. 10.1016/j.matchemphys.2010.08.082Search in Google Scholar

39 Likhanova, N. V, Domínguez-Aguilar, M. A., Olivares-Xometl, O., Nava-Entzana, N., Arce, E. and Dorantes, H.: The effect of ionic liquids with imidazolium and pyridinium cations on the corrosion inhibition of mild steel in acidic environment. Corros. Sci., 52 (2010) 20882097. 10.1016/j.corsci.2010.02.030Search in Google Scholar

40 Keles, M.: Electrochemical investigation of a schiff base synthesized by cinnamaldehyde as corrosion inhibitor on mild steel in acidic medium (2014) 193209. 10.1007/s11164–012–0955–5Search in Google Scholar

41 Umoren, S. A.: Polypropylene glycol: A novel corrosion inhibitor for × 60 pipeline steel in 15% HCl solution. J. Mol. Liq. 219 (2016) 946958. 10.1016/j.molliq.2016.03.077Search in Google Scholar

42 Negm, N. A., Migahed, M. A., Farag, R. K., Fadda, A. A., Awad, M. K. and Shaban, M. M.: High performance corrosion inhibition of novel tricationic surfactants on carbon steel in formation water: Electrochemical and computational evaluations. J. Mol. Liq. 262 (2018) 363375. 10.1016/j.molliq.2018.04.092Search in Google Scholar

43 Abd-Elaal, A. A., Elbasiony, N. M., Shaban, S. M. and Zaki, E. G.: Studying the corrosion inhibition of some prepared nonionic surfactants based on 3-(4-hydroxyphenyl) propanoic acid and estimating the influence of silver nanoparticles on the surface parameters. J. Mol. Liq. 249 (2018) 304317. 10.1016/j.molliq.2017.11.052Search in Google Scholar

44 Gad, E. A. M., Azzam, E. M. S. and Halim, S. A.: Theoretical approach for the performance of 4-mercapto-1-alkylpyridin-1-ium bromide as corrosion inhibitors using DFT. Egypt. J. Pet. 27 (2018) 695699. 10.1016/j.ejpe.2017.10.005Search in Google Scholar

45 Gad, E. A. M. and Al-Fahemi, J. H.: Adsorpitivity and corrosion inhibtion performance of 2-(alkyloxy)-N, N, N-tris (2-hydroxyethyl)-2-oxo-ethanaminium chloride using DFT Approach. Int. J. Sci. Eng. Res. 6 (2015) 570576.Search in Google Scholar

Received: 2019-03-21
Accepted: 2019-06-11
Published Online: 2020-01-23
Published in Print: 2020-01-21

© 2020, Carl Hanser Publisher, Munich