Accessible Requires Authentication Published by De Gruyter January 23, 2020

Statistical Optimisation of Rhamnolipid Production using a Pseudomonas putida Strain Cultivated on Renewable Carbon Sources of Waste Vegetable Oils

Statistische Optimierung der Rhamnolipid-Produktion unter Verwendun g eines Pseudomonas putida-Stammes, der auf nachwachsenden Kohlenstoffquellen aus pflanzlichen Altölen kultiviert wurde
Zulfiqar Ali Raza, Zafar M. Khalid, Naseer Ahmad and Bushra Tehseen


Herein, synthesis of rhamnolipid surfactants was performed using a non-pathogenic Pseudomona s putida strain cultured on a variety of waste frying oils (WFOs) under Taguchi multi-objective optimization design. The effect of substrate types, fermentation setups and incubation time on the biomass concentration, rhamnolipid yield and surface tension of the cultivate media has been investigated. The results demonstrate that the multi-objectives investigation helps to document the optimal limits of the process parameters based on Gray relational analysis. After finding the optimal conditions, a validati on run was performed; therein, the rhamnolipid yield increased from 3.4 to 4.1 g/L; the biomass concentration decreased by 4.84% with an additional surface tension reduction of 2.19% due to an increase of rhamnolipids yield. Overall, soybean WFO was observed to be a preferred substrate for P. putida strain both under Taguchi design and the validation run. The present study proposes a low total of runs and optimum product yield under the Taguchi based multi-objective optimization.


In diesem Paper wurde die Synthese von Rhamnolipid- Tensiden unter Verwendung eines nicht pathogenen Pseudomonas putida-Stamms durchgeführt, der auf einer Vielzahl von Abfallbratölen (WFOs) mittels eines Taguchi-Versuchsplans mit Mehrzieloptimierung kultivier t wurde. Der Einfluss von Substrattypen, Fermentationsansätzen und Inkubationszeit auf die Biomassekonzentration, die Rhamnolipidausbeute und die Oberflächenspannung der Kultivierungsmedien wurde untersucht. Die Ergebnisse zeigen, dass die Mehrzieluntersuchung hilft, die optimalen Grenzen der Prozessparameter auf der Grundlage einer Gray-Relational-Analyse zu dokumentieren. Nachdem die optimalen Bedingungen gefunden worden waren, wurde ein Validierungslauf durchgeführt. Dabei erhöhte sich die Rhamnolipidausbeute von 3,4 g/L auf 4,1 g/Ll; die Biomassek onzentration sank um 4,84% bei einer zusätzlichen Oberfläch enspannungsreduzierung von 2,19% aufgrund der erhöhten Ausbeute an Rhamnolipiden. Insgesamt wurde beobachtet, dass Sojabohnen-WFO ein bevorzugtes Substrat für den P. putida-Stamm sowohl unter dem Taguchi-Versuchsplan als auch bei dem Validierungslauf ist. Die vorliegende Studie schlägt eine geringe Gesamtzahl an Durchläufen und eine optimale Produktausbeute im Rahmen der Taguchi-basierten Mehrzieloptimierung vor.

Correspondence address, Dr. Zulfiqar Ali Raza, Department of Applied Sciences, National Textile University, Faisalabad-37610, Pakistan, Tel.: +92419230081, Fax +92419230098, E-Mail:

Dr. Raza is Associate Professor of Chemistry at National Textile University (NTU), Faisalabad, Pakistan. He is regarded among the pioneers who have initiated research activities and culture in the NTU by establishing chemistry research laboratories there. He originat ed the application of biotechnology in the conventional and advanced textile processes and products at NTU. He has published numerous publications in application of biotechnology in various sectors of science and technology.

Dr. Khalid is Professor of Biotechnology at International Islamic University, Islamabad, Pakistan. He has research interest in environmental biotechnology with special focus on bioremediation. He has published a lot in this area.

Dr. Ahmad is Assistant Professor of Statistics National Textile University, Faisalabad, Pakistan. He has research interest in applied statistics with special focus on multi-re sponse optimization. He has published many papers in this area.

Ms. Tehseen is PhD Scholar in Biotechnology at National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan.


1 Elshikh M. , MarchantR, and Banat, I. M.: Biosurfactants: promising bioactive molecules for oral-related health applications, FEMS Microbiol. Lett. 363 (2016) fnw213. PMid:27619892; 10.1093/femsle/fnw213 Search in Google Scholar

2 Nitschke M. and Silva, S. S. E.: Recent food applications of microbial surfactants, Crit. Rev. Food Sci. Nutr. 58 (2018) 631638. PMid:27437564; 10.1080/10408398.2016.1208635 Search in Google Scholar

3 Vecino X , Cruz, J., Moldes, A, and Rodrigues, L.: Biosurfactants in cosmetic formulations: trends and challenges, Crit. Rev. Biotechnol. 37 (2017) 911923. PMid:28076995; 10.1080/07388551.2016.1269053 Search in Google Scholar

4 Fracchia, L, Banat, J. J., Cavallo, M., Ceresa, C. and Banat, I. M.: Potential therapeutic applications of microbial surface-activecompounds, AIMS BioEng., 2 (2015) 144162. 10.3934/bioeng.2015.3.144 Search in Google Scholar

5 Elshikh, M., Funston, S., Chebbi, A., Ahmed, S., Marchant, R., and Banat, I. M.: Rhamnolipids from non-pathogenic Burkholderia thailandensis E264: physicochemical characterization, antimicrobial and antibiofilm efficacy against oral hygiene related pathogens, New Biotechnol. 36 (2017) 2636. PMid:28065676; 10.1016/j.nbt.2016.12.009 Search in Google Scholar

6 Bose, R. J., Ravikumar, R., Karuppagounder, V., Bennet, D., Rangasamy, S., and Thandavarayan, R. A.: Lipid-polymer hybrid nanoparticle-mediated therapeutics delivery: advances and challenges, Drug Discov. Today22 (2017) 12581265. PMid:28600191; 10.1016/j.drudis.2017.05.015 Search in Google Scholar

7 Santos, D. K. F., Rufino, R. D., Luna, J. M., Santos, V. A. and Sarubbo, L. A.: Biosurfactants: multifunctional biomolecules of the 21st century, Int. J. Mol. Sci., 17 (2016) 401431. PMid:26999123; 10.3390/ijms17030401 Search in Google Scholar

8 Radzuan, M. N., Banat, I. M., and Winterburn, J.: Production and characterization of rhamnolipid using palm oil agricultural refinery waste, Bioresour. Technol. 225 (2017) 99105. PMid:27888734; 10.1016/j.biortech.2016.11.052 Search in Google Scholar

9 Jean-Pierre, F., Tremblay, J. and Deziel, E.: Broth versus surface-grown cells: differential regulation of RsmY/Z small RNAs in Pseudomonas aeruginosa by the Gac/HptB system, Front. Microbiol. 7 (2017) 21682178. PMid:28119684; 10.3389/fmicb.2016.02168 Search in Google Scholar

10 Dutta, S, Basak, B., Bhunia, B., Sinha, A. and Dey, A.: Approaches towards the enhanced production of Rapamycin by Streptomyces hygroscopicus MTCC 4003 through mutagenesis and optimization of process parameters by Taguchi orthogonal array methodology, World J. Microbiol. Biotechnol. 33 (2017) 90102. PMid:28390015; 10.1007/s11274–017–2260–3 Search in Google Scholar

11 Raza, Z. A., Ahmad, N. and Kamal, S.: Multi-response optimization of rhamnolipid production using grey rational analysis in Taguchi method,. Biotechnol. Rep. 3 (2014) 8694. PMid:28626652; 10.1016/j.btre.2014.06.007 Search in Google Scholar

12 Xu, M., Zhu, Q., Wu, J., He, Y., Yang, G., Zhang, X., Li, L., Yu, X., Peng, H. and Wang, L.: Grey relational analysis for evaluating the effects of different rates of wine lees-derived biochar application on a plant-soil system with multi-metal contamination, Environ. Sci. Pollut. Res. 25 (2018) 69907001. PMid:29273988; 10.1007/s11356-017-1048-1 Search in Google Scholar

13 Akincioglu, G., Mendi, F., Cicek, A., and Akincioglu, S.: Taguchi optimization of machining parameters in drilling of AISI D2 steel using cryo-treated carbide drills, Sadhana, 42 (2017) 213222. 10.1007/s12046-017-0598-8 Search in Google Scholar

14 Raza, Z. A., Khan, M. S., Khalid, Z. M. and Rehman, A.: Production kinetics and tensioactive characteristics of biosurfactant from a Pseudomonas aeruginosa mutant grown on waste frying oils, Biotechnol. Lett. 28 (2006) 16231631. PMid:16955358; 10.1007/s10529-006-9134-3 Search in Google Scholar

15 Raza, Z. A., Khan, M. S, Khalid, Z. M. and RehmanA.: Production of biosurfactant using different hydrocarbons by Pseudomonas aeruginosa EBN-8 mutant, Z. Naturforsch. C61 (2006) 8794. PMid:16610223; 10.1515/znc-2006-1-216 Search in Google Scholar

16 Radlinski, L., Rowe, S. E., Kartchner, L. B., Maile, R., Cairns, B. A., Vitko, N. P., Gode, C. J., Lachiewicz, A. M., Wolfgang, M. C. and Conlon, B. P.: Pseudomonas aeruginosa exoproducts determine antibiotic efficacy against Staphylococcus aureus, PLoS Biol. 15 (2017) e2003981. PMid:29176757; 10.1371/journal.pbio.2003981 Search in Google Scholar

17 Kim Y , KimH, Beuchat, L. R. and Ryu, J. H.: Development of non-pathogenic bacterial biofilms on the surface of stainless steel which are inhibitory to Salmonella enterica, Food Microbiol, 69 (2018) 136142. PMid:28941894; 10.1016/ Search in Google Scholar

18 Sivasankar, P. and Kumar, G. S.: Influence of pH on dynamics of microbial enhanced oil recovery processes using biosurfactant producing Pseudomonas putida: mathematical modelling and numerical simulation. Bioresour. Technol. 224 (2017) 498508. PMid:27836230; 10.1016/j.biortech.2016.10.091 Search in Google Scholar

19 Wittgens, A., Santiago-Schuebel, B., Henkel, M., Tiso, T., Blank, L. M., Hausmann, R and Rosenau, F.: Heterologous production of long-chain rhamnolipids from Burkholderia glumae in Pseudomonas putida-a step forward to tailor-made rhamnolipids. Appl Microbiol Biotechnol. 102 (2018) 12291239. PMid:29264775; 10.1007/s00253-017-8702-x Search in Google Scholar

20 Raza, Z. A., KhanM. S. and Khalid, Z. M.: Evaluation of distant carbon sources in biosurfactant production by a gamma ray-induced Pseudomonas putida mutant, Process Biochem. 42 (2007) 686692. 10.1016/j.procbio.2006.10.001 Search in Google Scholar

21 Deziel, E, Lepine, F., Milot, S. and Villemur, R.: Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa strain 57RP. Biochim. Biophys. Acta1485: (2000) 145152. 10.1016/S1388-1981(00)00039-1 Search in Google Scholar

22 Krishnaiah, K. and Shahabudeen, P.: Applied design of experiments and Taguchi methods. PHI Learning Pvt. Ltd. (2012). Search in Google Scholar

23 Zhang, Y. and Miller, R. M.: Effect of rhamnolipid (biosurfactant) structure on solubilization and biodegradation of n-alkanes, Appl. Environ. Microbiol. 61 (1995) 22472251. Search in Google Scholar

24 Chandrasekaran, E. V. and Bemiller, J. N.: Constituent analyses of glycosaminoglycans, in: WhistlerRL and WolformML (Eds.), Methods in carbohydrate chemistry, Academic Press, New York (1980) 8996. 10.1016/B978-0-12-746208-0.50018-9 Search in Google Scholar

25 Aiba, S., Humphrey, A. E. and Millis, N. F.: Biochemical engineering, Academic Press, New York (1973) 75106. Search in Google Scholar

26 Ogulata, R. T., Mezarcioz, S. M.: Optimization of air permeability of knitted fabrics with the Taguchi approach. J TEXT I. 102 (2010) 395404. 10.1080/00405000.2010.482347 Search in Google Scholar

27 Deng, J.: Introduction to grey system. J. Grey. Syst. 1 (1989) 124. Search in Google Scholar

28 Rashedi, H. and Assadi, M. M.: Modeling and optimization of main factors in rhamnolipid production process by Pseudomonas aeruginosa HR, Int. J. Bioassays, 2 (2013) 13921398. 10.21746/ijbio.2013.10.0019 Search in Google Scholar

29 Khalifeh, A., Roozbehani, B. and Moradi, A. M. C.: Optimization of biosurfactants production and their application in oily polluted waters clearance recovery, Am. J. Oil Chem. Technol. 1 (2013) 13. 10.14266/ajoct13-1 Search in Google Scholar

30 Mnif, I., Sahnoun, R., Ellouze-Chaabouni, S. and Ghribi, D.: Evaluation of B. subtilis SPB1 biosurfactants’ potency for diesel-contaminated soil washing: optimization of oil desorption using Taguchi design, Environ. Sci. Pollut. Res. 21 (2014) 85186. PMid:23818070; 10.1007/s11356-013-1894-4 Search in Google Scholar

31 Haba, E., Espuny, M., Busquets, M. and Manresa, A.: Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils, J. Appl. Microbiol. 88 (2000) 379387. PMid:10747218; 10.1046/j.1365-2672.2000.00961.x Search in Google Scholar

32 Abalos, A., Pinazo, A., Infante, M., Casals, M., Garcia, F. and Manresa, A.: Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes, Langmuir17 (2001) 13671371. 10.1021/la0011735 Search in Google Scholar

33 Robert, M., Mercade, M. E., Bosch, M. P., Parra, J. L., Espuny, M. J., Manresa, M. A. and Guinea, J.: Effect of carbon source on biosurfactant production by Pseudomonas aeruginosa 44T1. Biotechnol. Lett. 11 (1989) 871874. 10.1007/BF01026843 Search in Google Scholar

34 Bento, F. M. and Gaylarde, C. C.: The production of interfacial emulsions by bacterial isolates from diesel fuels, Int. Biodeter. Biodegrad. 38 (1996) 3133. 10.1016/S0964-8305(96)00021-2 Search in Google Scholar

35 Rocha, C., San-Blas, F., San-Blas, G. and Vierma, K. L.: Biosurfactant production by two isolates of Pseudomonas aeruginosa, World J. Microbiol. Biotechnol. 8 (1992) 125128. PMid:24425392; 10.3390/ijms17030401 Search in Google Scholar

36 Amezcua-Vega, C., Ferrera-Cerrato, R., Esparza-Garcia, F., Rios-Leal, E. and Rodriguez-Vazquez, R.: Effect of combined nutrients on biosurfactant produced by Pseudomonas putida, J. Environ. Sci. Health A39 (2004) 29832991. 10.1081/LESA-200034784 Search in Google Scholar

37 Mercade, M. and Manresa, M.: The use of agroindustrial by-products for biosurfactant production, J. Am. Oil Chem. Soc. 71 (1994) 6164. 10.1007/BF02541473 Search in Google Scholar

38 An, C. J., Huang, G. H., Wei, J. and Yu, H.: Effect of short-chain organic acids on the enhanced desorption of phenanthrene by rhamnolipid biosurfactant in soil-water environment, Water Res. 45 (2011) 55015510. PMid:21890166; 10.1016/j.watres.2011.08.011 Search in Google Scholar

39 Singh, B. N., Rawat, A. K. S., Khan, W., Naqvi, A. H. and Singh, B. R.: Biosynthesis of stable antioxidant ZnO nanoparticles by Pseudomonas aeruginosa rhamnolipids, PLoS One9 (2014) e106937. PMid:25187953; 10.1371/journal.pone.0106937 Search in Google Scholar

40 Randhawa, K. K. S. and Rahman, P. K.: Rhamnolipid biosurfactants-past, present, and future scenario of global market, Front. Microbiol. 5 (2014) 454460. PMid:25228898; 10.3389/fmicb.2014.00454 Search in Google Scholar

41 Dasari, S, Subbaiah, K. C. V., Wudayagiri, R. and Valluru, L.: Biosurfactant-mediated biodegradation of polycyclic aromatic hydrocarbons-naphthalene, Bioremediat. J. 18 (2014) 258265. 10.1080/10889868.2014.933169 Search in Google Scholar

Received: 2019-01-02
Accepted: 2019-03-13
Published Online: 2020-01-23
Published in Print: 2020-01-21

© 2020, Carl Hanser Publisher, Munich