Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 18, 2020

Washing Performance of Detergent Formulations with Sodium Oxalate as Builder in Presence of Different Enzymes

Waschleistung von Waschmittelformulierungen mit Natriumoxalat als Builder in Gegenwart verschiedener Enzyme
  • Chen Li , Hong Xu and Jinxiang Dong

Abstract

In this work, we have investigated the washing performance of sodium oxalate-based detergents containing different enzymes (protease, lipase and cellulase). The results show that sodium oxalate-based detergents with enzymes have a better washing performance than formulations containing the conventional builder STPP and zeolite 4A. For sodium oxalate-based with protease, the amount of sodium oxalate and protease have a significant effect on the detergency. Lipase can improve detergency of sodium oxalate-based detergents after “first washing” in the presence of different anionic surfactant (LAS, MES and AES). For cellulase, only sodium oxalate in the presence of LAS has a detergency increase.

Kurzfassung

In dieser Arbeit haben wir die Waschleistung von Waschmittelmittelformulierungen auf Natriumoxalatbasis untersucht, die verschiedene Enzyme (Protease, Lipase und Cellulase) enthalten. Die Ergebnisse zeigen, dass die Waschmittelformulierungen auf Natriumoxalatbasis mit Enzymen eine bessere Waschleistung aufweisen als enzymhaltige Formulierungen auf Basis von konventionellen Buildern wie STPP und Zeolith 4A. Waschmittelformulierungen auf Natriumoxalatbasis, die Protease enthalten, hat die Menge an Natriumoxalat und an Protease einen signifikanten Einfluss auf die Waschkraft. Lipase kann die Waschkraft von Waschmittelformulierungen auf Natriumoxalatbasis verbessern, nachdem sie unter verschiedenen anionischen Tensiden (LAS, MES und AES) “gewaschen” wurden. Mit Cellulase hat nur Natriumoxalat mit LAS eine Waschkraftsteigerung.


Correspondence address, Dr. Jinxiang Dong, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, 79# West Yingze Avenue, Wanbailin District, Taiyuan, Shanxi 030024, P.-R. China, Tel.: +86-1-37-00-51-24-66, Fax: +86-03-51-6-11-11-78, E-Mail:

References

1 N. Chaiyo , R.Muanghlua, S.Niemcharoen, B.Boonchom, P.Seeharaj and N.Vittayakorn: Non-isothermal kinetics of the thermal decomposition of sodium oxalate Na2C2O4, J. Therm. Anal. Calorim. 107 (2011) 10231029. 10.1007/s10973-011-1675-6Search in Google Scholar

2 B. Yu , W.Wang and Z.Cai: Application of sodium oxalate in the dyeing of cotton fabric with reactive red 3BS, J. Text. I. 105 (2014) 321326. 10.1080/00405000.2013.839354Search in Google Scholar

3 E. George : Saturated aliphatic dicarboxylic acid salts as detergent builders, US 3661787, 1972.Search in Google Scholar

4 C. Li , L.Wang, M.Yuan, H.Xu and J.Dong: A New Route for Indirect Mineralization of Carbon Dioxide–Sodium Oxalate as a Detergent Builder, Sci. Rep. 9 (2019) 12852. 31492879 10.1038/s41598-019-49127-8Search in Google Scholar

5 W. R. Michael : Metabolism of linear alkylate sulfonate and alkyl benzene sulfonate in albino rats, Toxicol. Appl. Pharmacol. 12(1968) 473485. 10.1016/0041-008X(68)90154-3Search in Google Scholar

6 J. Sato , Y.Yamamoto, T.Nakamura, S.Ishida and Y.Takagi: Toxicity studies of tetradecanoic acid, 2-sulfo-, 1-methylester, sodium salt (C14-MES), J. Toxico. Sci.30(2005) 339347. 16404142 10.2131/jts.30.339Search in Google Scholar

7 A. I. T. Walker , V. K. H.Brown, L. W.Ferrigan, R. G.Pickering and D. A.Williams: Toxicity of sodium lauryl sulphate, sodium lauryl ethoxysulphate and corresponding surfactants derived from synthetic alcohols, Food Cosmet. Toxicol.5(1967) 763769. 10.1016/S0015-6264(67)83275-9Search in Google Scholar

8 H. Hellmuth and M.Dreja: Understanding Interactions of Surfactants and Enzymes: Impact of Individual Surfactants on Stability and Wash Performance of Protease Enzyme in Detergents, Tenside Surf. Det. 53 (2016) 502508. 10.3139/113.110447Search in Google Scholar

9 J. Zhang , Y.Zhang, W.Li, X.Li and X.Lian: Optimizing Detergent Formulation with Enzymes, J. Surfact. Deterg. 17 (2014) 10591067. 10.1007/s11743-014-1626-xSearch in Google Scholar

10 D. Kumar , S. N.Thakur, R.Verma and T. C.Bhalla: Microbial Proteases and Application as Laundry Detergent Additive, Res. J. Microbiol. 3 (2008) 661672. 10.3923/jm.2008.661.672Search in Google Scholar

11 M. Dreja , I.Vockenroth, N.Plath, C.Schneider and E.Martinez: Formulation, Performance and Sustainability Aspects of Liquid Laundry Detergents, Tenside Surfact. Deterg. 51 (2014) 108112. 10.3139/113.110447Search in Google Scholar

12 H. G. Hauthal : Washing at Low Temperatures–Saving Energy, Ensuring Hygiene, Tenside Surfact. Deterg. 49 (2012) 171177. 10.3139/113.110181Search in Google Scholar

13 C. S. Pundir and N.Chauhan: Coimmobilization of Detergent Enzymes onto a Plastic Bucket and Brush for Their Application in Cloth Washing, Ind. Eng. Chem. Res. 51 (2012) 35563563. 10.1021/ie202053rSearch in Google Scholar

14 J. Zhang and J.Zhang: Study on the interaction of alkaline protease with main surfactants in detergent, Colloid. Polym. Sci.294 (2016) 247255. 10.1007/s00396-015-3777-3Search in Google Scholar

15 A. Hoppe and R. R.Theimer: Titrimetric test for lipase activity using stabilized triolein emulsions, Phytochemistry42 (1996) 973978. 10.1016/0031-9422(96)00051-9Search in Google Scholar

16 E. Jurado , V.Bravo, G.Luzón, M.Fernández-Serrano, M.García-Román, D.Altmajer-Vaz and J. M.Vicaria: Hard-surface cleaning using lipases: enzyme–surfactant interactions and washing tests, J. Surfact. Deterg. 10 (2007) 670. 10.1007/s11743-006-1009-zSearch in Google Scholar

17 G. L. Russell and L. N.Britton: Use of certain alcohol ethoxylates to maintain protease stability in the presence of anionic surfactants, J. Surfact. Deterg. 5 (2002) 510. 10.1007/s11743-002-0198-9Search in Google Scholar

18 H. Lund , S. G.Kaasgaard, P.Skagerlind, L.Jorgensen, C. I.Jorgensen and M.van de Weert: Correlation Between Enzyme Activity and Stability of a Protease, an Alpha-Amylase and a Lipase in a Simplified Liquid Laundry Detergent System, Determined by Differential Scanning Calorimetry, J. Surfact. Deterg. 15 (2012) 921. 10.1007/s11743-011-1272-5Search in Google Scholar

19 L. K. Nielsen , J.Risbo, T. H.Callisen and T.Bj⊘rnholm: Lag-burst kinetics in phospholipase A2 hydrolysis of DPPC bilayers visualized by atomic force microscopy, Biochim. Biophys. Acta1420 (1999) 266271. 10.1016/S0005-2736(99)00103-0Search in Google Scholar

20 T. Snabe and S. B.Petersen: Lag phase and hydrolysis mechanisms of triacylglycerol film lipolysis, Chem. Phys. Lipids125 (2003) 6982. 10.1016/S0009-3084(03)00072-0Search in Google Scholar

21 R. Verger : ‘Interfacial activation' of lipases: facts and artifacts, Trends Biotechnol. 15 (1997) 3238. 10.1016/S0167-7799(96)10064-0Search in Google Scholar

22 H. S. Olsen and P.Falholt: The role of enzymes in modern detergency, J. Surfact. Deterg. 1 (1998). 10.1007/s11743-998-0058-7Search in Google Scholar

Received: 2019-10-27
Accepted: 2020-01-16
Published Online: 2020-06-18
Published in Print: 2020-05-15

© 2020, Carl Hanser Publisher, Munich

Downloaded on 30.11.2023 from https://www.degruyter.com/document/doi/10.3139/113.110678/html
Scroll to top button