Abstract
Olive oil was selected as the oil substrate and hydrolyzed by Candida sp. 99–125 lipase. The hydrolysis rate of olive oil was used as an indicator. Based on the single factor experiment, the effects of dosage of Candida sp. 99–125 lipase, reacting temperature, pH value and water-oil ratio were investigated. Box-Behnken center combination and response surface methodology were utilized to optimize the hydrolysis rate. The results showed that the significant differences of each single factor on lipase hydrolysis of olive oil on the oil-water interface were different. pH value is the first significance factor, and the significance of water oil ratio on lipase hydrolysis of olive oil is second only to pH value. Finally, the mechanism of Candida sp. 99–125 lipase hydrolyzing olive oil at the oil-water interface was discussed.
Kurzfassung
Olivenöl wurde als Ölsubstrat ausgewählt und mit Candida sp. 99–125-Lipase hydrolysiert. Die Hydrolysegeschwindigkeit des Olivenöls wurde als Indikator verwendet. Basierend auf dem Einfaktor-Experiment wurden die Auswirkungen der Candida sp. 99–125-Lipase-Dosierung, der Reaktionstemperatur, des pH-Wertes und des Wasser-Öl-Verhältnisses untersucht. Zur Optimierung der Hydrolysegeschwindigkeit wurde eine Kombination aus Box-Behnken- und Response-Surface-Versuchsplänen verwendet. Die Ergebnisse zeigten, dass die signifikanten Unterschiede jedes einzelnen Faktors bei der Lipase-Hydrolyse von Olivenöl an der Öl-Wasser-Grenzfläche unterschiedlich waren. Der pH-Wert ist der erste Signifikanzfaktor, das Wasser-Öl-Verhältnis ist bei der Lipase-Hydrolyse von Olivenöl ist der zweite Faktor. Schließlich wurde der Mechanismus der Candida sp. 99–125-Lipase-Hydrolyse von Olivenöl an der Öl-Wasser-Grenzfläche diskutiert.
References
1 R. D. Schmid and R.Verger: Lipases: Interfacial Enzymes with Attractive Applications. Angewandte Chemie(International Edition)37(12) (1998) 1608–1633. 10.1002/(sici)1521-3773(19980703)37:12<1608::aid-anie1608>3.0.coSearch in Google Scholar
2 H. C. Nguyen , S. H.Liang, T. T.Doan, C. H.Su and P. C.Yang: Lipase-catalyzed synthesis of biodiesel from black soldier fly (Hermetica illucens): Optimization by using response surface methodology. Energy Conversion and Management (2017) 145: 335–342. 10.1016/j.enconman.2017.05.010Search in Google Scholar
3 B. An , Y.Chen, B.Li, G.Qin and S.Tian: Ca2+-cam regulating viability of candida guilliermondii under oxidative stress by acting on detergent resistant membrane proteins. Journal of Proteomics, 109 (2014) 38–49. 24998432 10.1016/j.jprot.2014.06.022Search in Google Scholar PubMed
4 R. Dicosimo , J.Mcauliffe, A. J.Poulose and G.Bohlmann: Industrial use of immobilized enzymes. Chemical Society Reviews, 42(15) (2013) 6437. 23436023 10.1039/C3CS35506CSearch in Google Scholar
5 S. Rehm , P.Trodler and P.Jürgen: Solvent-induced lid opening in lipases: A molecular dynamics study. Protein Science, 19(11) (2010): 2122–2130. 20812327 10.1002/pro.493Search in Google Scholar PubMed PubMed Central
6 M. Mathesh , B.Luan, T. O.Akanbi, J. K.Weber, J. Q.Liu, C. J.Borrow, R. H.Zhou and W. R.Yang: Opening Lids: Modulation of Lipase Immobilization by Graphene Oxides. ACS Catalysis, (2016): acscatal.6b00942. 10.1021/acscatal.6b00942Search in Google Scholar
7 F. Bordes , S.Barbe, P.Escalier, L.Mourey, I.André, A.Marty and S.Tranier: Exploring the Conformational States and Rearrangements of Yarrowia lipolytica Lipase. Biophysical Journal, (2010) 99(7): 2225–2234. 20923657 10.1016/j.bpj.2010.07.040Search in Google Scholar PubMed PubMed Central
8 W. C. Ko , H. J.Wang, J. S.Hwang and C. W.Hsieh: Efficient hydrolysis of tuna oil by a surfactant-coated lipase in a two-phase system. J Agric Food Chem, 54(5) (2006) 1849–1853. 16506843 10.1021/jf051937sSearch in Google Scholar PubMed
9 C. Y. Yao , S. K.Tang, Z. M.He and X.Deng: Kinetics of lipase-catalyzed hydrolysis of olive oil in aot/isooctane reversed micelles. Journal of Molecular Catalysis B Enzymatic, 35(4-6) (2005) 108–112. 10.1016/j.molcatb.2005.06.005Search in Google Scholar
10 Z. D. Knezevic , S. S.Siler-Marinkovic and L. V.Mojovic: Kinetics of lipase-catalyzed hydrolysis of palm oil in lecithin/izooctane reversed micelles. Applied Microbiology & Biotechnology, 49(3) (1998) 267–271. 10.1007/s002530051167Search in Google Scholar
11 R. Elisandra , E. R.Roberta, L.Patrícia, D. O.Débora and D. L.Marco: Comparison of two lipases in the hydrolysis of oil and grease in wastewater of the swine meat industry. Industrial & Engineering Chemistry Research, 47(6) (2008) 1760–1765. 10.1021/ie0708834Search in Google Scholar
12 P. Wang , Z. D.Kea, J. J.Yi, X.Liu, L.Hao, Q. Z.Kang and J.Lu: Effects of β-cyclodextrin on the enzymatic hydrolysis of hemp seed oil by lipase Candida sp. 99–125. Industrial Crops & Products, 129(11) (2019): 688–693. 10.1016/j.indcrop.2018.11.046Search in Google Scholar
13 J. Lu , P.Wang, Z.Ke, X.Liu, Q.Kang and L.Hao: Effect of metal ions on the enzymatic hydrolysis of hemp seed oil by lipase, candida, sp. 99–125. International Journal of Biological Macromolecules, 114(5) (2018): 922–928. 29604356 10.1016/j.ijbiomac.2018.03.168Search in Google Scholar PubMed
14 A. Aloulou , A.Bénarouche, D.Puccinelli, S.Spinelli, J. F.Cavalier, C.Cambillau and F.Carrière: Biochemical and structural characterization of non-glycosylated Yarrowia lipolytica LIP2 lipase. European Journal of Lipid Science & Technology, 115(4) (2013): 429–441. 10.1002/ejlt.201200440Search in Google Scholar
15 M. Luisa Rúa , C.Schmidt-Dannert, S.Wahl, A.Sprauer and R. D.Schmid: Thermoalkalophilic lipase of bacillus thermocatenulatus: large-scale production, purification and properties: aggregation behaviour and its effect on activity. Journal of Biotechnology, 56(2) (2013) 89–102. 10.1002/ejlt.201200440Search in Google Scholar
16 C. Earland and D. J.Raven: Determination of the saponification value of an oil. Experiments in Textile & Fibre Chemistry, (1971): 11–12. 10.1016/B978-0-408-70089-4.50009-0Search in Google Scholar
17 O. Y. Berezin , Y. I.Tur'yan, I.Kuselman and A.Shenhar: Rapid and complete extraction of free fatty acids from oilseeds for acid value determination. Journal of the American Oil Chemists Society, 73(12), (1996) 1707–1711. 10.1007/BF02517976Search in Google Scholar
18 P. Reis , K.Holmberg, H.Watzke, M. E.Leser and R.Miller: Lipases at interfaces: a review. Advances in Colloid and Interface Science, 147–148 (2009) 237–250. 18691682 10.1016/j.cis.2008.06.001Search in Google Scholar PubMed
19 P. Heidrich , J.Richter, J.Li, A.Kessler, M.Gerstenlauer, H.Heißler, T.Weber and P.Stamminger: Potential of Near-Infrared Spectroscopy to Evaluate the Cleaning Performance of Dishwashing Processes. Tenside Surfactants Detergents56(6) (2019) 454–461. 10.3139/113.110652Search in Google Scholar
20 K. Salehi , A.Bahmani, B.Shahmoradi, M. A.Pordel, S.Kohzadi and Y.Gong: Response surface methodology (rsm) optimization approach for degradation of direct blue 71 dye using cuo–zno nanocomposite. International Journal of Environmental Science and Technology. 14 (10) (2017) 2067–2076. 10.1007/s13762-017-1308-0Search in Google Scholar
21 H. C. Nguyen , S. H.Liang, S. S.Chen, C. H.Su and C. C.Chien: Enzymatic production of biodiesel from insect fat using methyl acetate as an acyl acceptor: optimization by using response surface methodology. Energy Conversion & Management. 158 (2018), 168–175. 10.1016/j.enconman.2017.12.068Search in Google Scholar
22 P. Reis , H.Watzke, M.Leser, K.Holmberg and R.Miller: Interfacial mechanism of lipolysis as self-regulated process. Biophysical Chemistry, 147(3) (2010), 93–103. 20171004 10.1016/j.bpc.2010.01.005Search in Google Scholar PubMed
23 A. Valério , R. L.Krüger, J.Ninow, F. C.Corazza, D.de Oliveira, J. V.Oliveira and M. L.Corazza: Kinetics of solvent-free lipase-catalyzed glycerolysis of olive oil in surfactant system. Journal of Agricultural and Food Chemistry, 57(18) (2009), 8350–8356. 19708657 10.1016/j.bpc.2010.01.005Search in Google Scholar
24 G. H. Peters and R. P.Bywater: Essential motions in a fungal lipase with bound substrate, covalently attached inhibitor and product. Journal of Molecular Recognition, 15(6) (2002) 393–404. 12501159 10.1002/jmr.579Search in Google Scholar PubMed
25 S. F. Li and W. T.Wu: Lipase-immobilized electrospun PAN nanofibrous membranes for soybean oil hydrolysis. Biochemical Engineering Journal, 45(1) (2009) 48–53. 10.1016/j.bej.2009.02.004Search in Google Scholar
26 Z. Li , H.Chen, J.Su, W.Wang, H.Chen, B.Yang and Y. H.Wang: A highly efficient and enzyme-recoverable method for enzymatic concentrating omega-3 fatty acids generated by hydrolysis of fish oil in a substrate-constituted three-liquid phase system. Journal of Agricultural and Food Chemistry. (2019). 30739448 10.1021/acs.jafc.8b06382Search in Google Scholar PubMed
27 V. Delorme , R.Dhouib, S.Canaan, F.Fotiadu, F.Carrière and J. F.Cavalier: Effects of surfactants on lipase structure, activity, and inhibition. Pharmaceutical Research, 28 (8) (2011), 1831–1842. 21234659 10.3321/j.issn:0567-7351.2004.19.008Search in Google Scholar
28 K. V. Yatish , H. S.Lalithamba, R.Suresh and Harsha H. R.Hebbar: Optimization of bauhinia variegata biodiesel production and its performance, combustion and emission study on diesel engine. Renewable Energy, 122 (2018), 561–575. 10.1016/j.renene.2018.01.124Search in Google Scholar
29 H. C. Nguyen , S. H.Liang, S. S.Chen, C. H.Su, J. H.Lin and C. C.Chien: Enzymatic production of biodiesel from insect fat using methyl acetate as an acyl acceptor: optimization by using response surface methodology. Energ Conver Manage, 158 (2018), 168–175. 10.1016/j.enconman.2017.12.068Search in Google Scholar
30 F. Rahimpour , T.Shojaeimehr, M. A.Khadivi and M.Sadeghi: A modeling study by response surface methodology (rsm) and artificial neural network (ann) on Cu2+ adsorption optimization using light expended clay aggregate (leca). Journal of Industrial and Engineering Chemistry, 20(3) (2013). 10.1016/j.jiec.2013.06.017Search in Google Scholar
31 L. Bellucci , T.Laino, A.Tafi and M.Botta: Metadynamics simulations of enantioselective acylation give insights into the catalytic mechanism of burkholderia cepacia lipase. Journal of Biotechnology, 160 (3-4) (2012) 263. 10.1021/ct900636wSearch in Google Scholar
© 2020, Carl Hanser Publisher, Munich