Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 18, 2020

Microwave Assisted Synthesis of Cationic Amino Sugar Surfactants

Mikrowellenunterstützte Synthese von kationischen Amino-Zuckertensiden
  • Priya S. Singh , Aizaz Shaikh , Aditi Deshmukh and Amit P. Pratap

Abstract

Chitosan is an abundant and renewable natural biopolymer which exhibits a variety of beneficial properties. Quaternized chitosan compound was extensively studied as an antistatic agent in cosmetics and hair care products such as in hair conditioners and fabric softeners. However, the low solubility of chitosan in water limits its applications. This paper describes a novel way to synthesize quaternized derivatives which were further used as cationic amino sugar based surfactants. The quaternized derivatives of chitosan were synthesized and characterized on the basis of various properties. The resulting derivatives have excellent solubilities in aqueous solutions. In the present work the cationic quaternized surfactants were synthesized under microwave irradiation. Compared to a conventional synthesis the compound N,N,N-trimethyl chitosan (TMC) was obtained with higher yield from the reaction between chitosan and methyl iodide using N-methyl-2-pyrrolidone (NMP) as a solvent. We also synthesized it by adding dimethyl sulfate (DMS) under conventional as well as microwave irradiation method. The characterization of the quaternized derivatives of chitosan was done by FTIR spectra, 1H NMR, TLC and XRD analysis. Thus, a cationic amino sugar surfactant using a biopolymer was successfully synthesized under microwave irradiation with an efficient yield.

Kurzfassung

Chitosan ist ein reichlich vorhandenes und erneuerbares natürliches Biopolymer, das eine Vielzahl von vorteilhaften Eigenschaften aufweist. Die quaternisierte Chitosan-Verbindung wurde ausführlich als antistatisches Mittel in Kosmetika und Haarpflegeprodukten wie z. B. in Haarspülungen und in Weichspülern untersucht. Die geringe Löslichkeit von Chitosan in Wasser schränkt jedoch seine Anwendungen ein. Dieser Beitrag bietet eine neuartige Möglichkeit zur Synthese quaternisierter Derivate, die als kationische Tenside auf der Basis von Amino-Zuckern weiter verwendet werden. Die quaternisierten Derivate von Chitosan wurden auf der Basis verschiedener Eigenschaften synthetisiert und charakterisiert. Die resultierenden Derivate haben ausgezeichnete Löslichkeiten in wässrigen Lösungen. In der vorliegenden Arbeit wurden die kationischen quaternisierten Tenside unter Mikrowellenbestrahlung synthetisiert. Im Vergleich zur konventionellen Synthese wurde die Verbindung N,N,N-Trimethylchitosan (TMC) mit höherer Ausbeute aus der Reaktion zwischen Chitosan und Methyliodid unter Verwendung von N-Methyl-2-Pyrrolidon (NMP) als Lösungsmittel erhalten. Wir synthetisierten es auch durch Zugabe von Dimethylsulfat (DMS) sowohl unter konventioneller als auch unter Mikrowellen-Bestrahlung. Die Charakterisierung der quaternisierten Derivate von Chitosan wurde mit FTIR-Spektren, 1H-NMR, TLC und XRD-Analyse durchgeführt. Auf diese Weise wurde ein kationisches Zuckertensid mit einem Biopolymer unter Mikrowellen-Bestrahlung in einer effizienten Ausbeute erfolgreich synthetisiert.


Correspondence address, Prof. Dr. Amit P. Pratap, Department of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology (University under Section-3 of UGC Act 1956), Nathalal Parekh Road, Matunga (East), Mumbai – 400019, India, Tel.: 91-22-33 61 25 56, Fax: 91-22-33 61 10 20, E-Mail:

Dr. Amit P. Pratap completed his graduation and post graduation in Oil Technology in 2001 and obtained his doctorate degree in 2006 from Institute of Chemical Technology, Mumbai. He served the department as a “Professor J. G. Kane Academic Associate” for over two years and worked as Assistant Professor over 10 years. At present he is Associate Professor and for the 15 years he is involved in the teaching, research and development in the field of vegetable oil based lubricants, additives and biosurfactants. His research interest includes triboapplications of vegetable oils, structural modifications of oils and fats, biosurfactants and specialty products.

Ms. Priya Singh completed his graduation and post graduation in Chemistry from University of Mumbai. At present she is perusing Ph. D. (Science) in Chemistry at Institute of Chemical Technology, Mumbai.

Mr. Aizaz Shaikh completed his graduation in Chemical Engg from Univeristy of Mumbai. At present he is perusing M. Tech. (Oils) at Institute of Chemical Technology, Mumbai.

Mrs. Aditi Deshmukh is currently working with B. Tech. in Oils, Oleochemicals and Surfactant Technology at Institute of Chemical Technology, Matunga, Mumbai, India.


References

1 V. Mourya and N.Inamdar: Chitosan-modifications and applications: Opportunities galore. Reactive & Functional Polymers68 (2008) 10131051. 10.1016/j.reactfunctpolym.2008.03.002Search in Google Scholar

2 J. Ngimhuanga , J.Furukawab, T.Satoha, T.Furuikea and N.Sakairia: Synthesis of a novel polymeric surfactant by reductive N-alkylation of chitosan with 3-O-dodecyl-D-glucose. Polymer45 (2004) 837841. 10.1016/j.polymer.2003.11.034Search in Google Scholar

3 S. Kaur and G.Dhillon: Recent trends in biological extraction of chitin from marine shell wastes: a review. Critical Reviews in Biotechnology35(1) (2013) 4461. 24083454 10.3109/07388551.2013.798256Search in Google Scholar PubMed

4 W. Malette , H.Quigley, E.Adickes, R.Muzzarelli, C.Jeuniaux and G.Gooday: Chitin in Nature and Technology, Plenum Press, New York, (1986) 435442. 10.1007/978-1-4613-2167-5_51Search in Google Scholar

5 R. Puchta : Cationic surfactants in laundry detergents and laundry after treatments aids, J. Am. Oil Chem. Soc. 61 (1984) 367. 10.1007/BF02678796Search in Google Scholar

6 J. Mataa , D.Varadea and P.Bahadurb: Aggregation behavior of quaternary salt based cationic surfactants, Therm-°Chimica Acta428 (2005) 147155. 10.1016/j.tca.2004.11.009Search in Google Scholar

7 W. Samjomsang : Synthetic methods and applications of chitosan containing pyridylmethyl moiety and its quaternized derivatives: A review, Carbohydrate polymers80 (2010) 631647. 10.1016/j.carbpol.2009.12.037Search in Google Scholar

8 S. Mishra and V.Tyagi: Ester quats: The Novel Class of Cationic Fabric Softeners, J. Oleo Sci.56(6) (2007) 269271. 17898491 10.5650/jos.56.269Search in Google Scholar PubMed

9 G. Gelardi , R. J.Flatt: Chemistry of chemical admixtures, Science and Technology of Concrete Admixtures (2016) 5. 10.1016/C2015-0-00150-2Search in Google Scholar

10 Y. Zambito and C.Zaino, G.Uccello-Barretta, F.Balzano, G.Di Colo, Improved synthesis of quaternary ammonium-chitosan conjugates (N+-Ch) for enhanced intestinal drug permeation, European journal of pharmaceutical sciences33 (2008) 343350. 18296036 10.1016/j.ejps.2008.01.004Search in Google Scholar PubMed

11 D. Tripathy and A.Mishra: Convenient synthesis, characterization and surface active properties of novel cationic gemini surfactants with carbonate linkage based on C12 C18 sat./unsat. fatty acids, Journal of Applied Research and Technology15 (2017) 93101. 10.1016/j.jart.2016.12.004Search in Google Scholar

12 J. Sun , W.Wang and Q.Yue: Review on Microwave-Matter Interaction Fundamentals and Efficient Microwave-Ass-°Ciated Heating Strategies, Materials (Basel) (2016) 231. 28773355 10.3390/ma9040231Search in Google Scholar PubMed PubMed Central

13 M. Venkatesh and G.Raghavan: An Overview of Microwave Processing and Dielectric Properties of Agri-food Materialsm, Biosyst. Eng.88 (2004) 118. 10.1016/j.biosystemseng.2004.01.007Search in Google Scholar

14 A. Sieval , M.Thanou, A.Kotze, J.Verhoef, J.Brussee and H.Junginger: N-Trimethylated Chitosan Chloride (TMC) Improves the Intestinal Permeation of the Peptide Drug Buserelin In Vitro (Caco-2 Cells) and In Vivo (Rats), Pharmaceutical Research, Vol 17 January (2000) 2731.10.1023/A:1007558206506Search in Google Scholar

15 Y. Yuan , B.Chesnutt, W.Haggard and J.Bumgardner: Deacetylation of Chitosan: Material Characterization and in vitro Evaluation via Albumin Adsorption and Pre-Osteoblastic Cell Cultures, Materials (2011), 4, 13991416. 28824150 10.3390/ma4081399Search in Google Scholar PubMed PubMed Central

Received: 2019-04-27
Accepted: 2019-10-28
Published Online: 2020-06-18
Published in Print: 2020-05-15

© 2020, Carl Hanser Publisher, Munich

Downloaded on 30.11.2023 from https://www.degruyter.com/document/doi/10.3139/113.110684/html
Scroll to top button