Accessible Requires Authentication Published by De Gruyter May 26, 2013

Three-Dimensional Optimal Material Distributions for Micro-Gripper with Straight-Line Path and Parallel Movement Arms

Optimale dreidimensionale Materialverteilung für Mikrogreifer mit Geradeausfunktion und parallelen Bewegungsarmen
Mahmoud Helal, Lining Sun and Liguo Chen
From the journal Materials Testing

Abstract

The development of micro-electro-mechanical systems (MEMS) is a subject of intense research due to the significant impact of miniaturization. The assembly of micro-devices involves handling of parts that are extremely small. A micro-gripper compliant mechanism is one of the key elements in micro-robotics as well as micro-assembly technologies for handling and manipulating micro-objects without damage. Topology optimization has proven to be a power- ful method for the conceptual design of structures and mechanisms. This paper presents topology optimization of three-dimensional micro-gripper compliant mechanism with straight-line path and with parallel movement gripping arms. A three-dimensional finite element analysis model using ANSYS is constructed for the propose design domain. The optimal configuration micro-grippers, which can realize a straight-line path and parallel movement of the gripping arms, are demonstrated.

Kurzfassung

Die Entwicklung von mikro-elektrisch-mechanischen Systemen (MEMS) ist aufgrund der signifikanten Miniaturisierung ein intensives Forschungsfeld. Der Zusammenbau von solchen Mikrokomponenten beinhaltet das Handling von extrem kleinen Teilen. Schlüsselelemente der Mikro-Robotik sind sowohl greiferähnliche Mechanismen als auch die Technologien für den Mikro-Zusammenbau und das Handling der Mikroelemente, ohne sie zu beschädigen. Die Topologie-Optimierung hat sich als hilfreiches Werkzeug für das Desinkonzept der Strukturen und Mechanismen erwiesen. Der vorliegende Beitrag stellt die Topologie-Optimierung für einen dreidimensionalen micro-greifer-ähnlichen Mechanismus mit Geradeausfunktion und parallelen Bewegungsarmen vor. Hierzu wurde ein dreidimensionales Finite Elemente Modell mithilfe des ANSYS-Codes konstruiert, um das Design abzubilden. Die optimale Konfiguration der Mikrogreifer, die eine Geradeausfunktion und Parallelbewegungen der Greiferarme realisieren können, wird ebenfalls gezeigt.


Assistant Lecturer Mahmoud M.K. Helal, born in 1978, studied Mechanical Engineering in Production Engineering and Mechanical Design Department at Mansoura University from1995 to 2000. In 2005, he finished his MSc. He works as an assistant lecture in the Production Engineering and Mechanical Design Department at Mansoura University.

Professor Lining Sun graduated with the Bachelor‧s degree in Mechanical Engineering and Master‧s degree in Harbin Institute of Technology in 1985 and 1988 and completed his Ph.D. degree in mechatronics engineering in 1993. His research interests have encompassed a number of related areas, including: robot control, design of actuators, design and control of high speed machines, MEMS 3D assembly, MEMS robotic task execution, micromanipulation robot, etc. He has published extensively in journals and conferences and has supervised over 50 masters as well as Ph.D. students and a number of PostDocs and research engineers in these various research areas.

Associate Professor Liguo Chen received his bachelor and master degrees in Mechanical from Harbin Institute of Science and Technology in 1997 and 2000. He received his Ph. D. degree in mechatronics from Harbin Institute of Technology in 2003. Since 2003, he has been with the Robotics Institute at Harbin Institute of Technology, and is now an Associate Professor. Dr. Chen‧s research interests lie in robotics and automation, computer vision, MEMS 3D assembly, and micromanipulation robot.


References

1 G. K.Ananthasuresh: Optimal Synthesis Methods for MEMS, Springer (2003)10.1007/978-1-4615-0487-0 Search in Google Scholar

2 L. L.Howell: Compliant Mechanisms, John Wiley & Sons, New York (2001)10.1002/9781118516485 Search in Google Scholar

3 L. L.Howell, A.Midha: A method for the design of compliant mechanisms (1994) Search in Google Scholar

4 G. K.Ananthasuresh, S.Kota, Y.Gianchandani: A methodical approach to design of compliant micro-mechanisms, Solid-State, Sensor and Actuator Workshop (1994), pp. 189192 Search in Google Scholar

5 O.Sigmund: On the design of compliant mechanisms using topology optimization, Mech Struct Mach25 (1997), pp. 493524.10.1080/08905459708945415 Search in Google Scholar

6 H. A.Eschenauer, N.Olhoff: Topology optimization of continuum structures: a review, Appl Mech Rev, 54 (2001), pp. 33138910.1115/1.1388075 Search in Google Scholar

7 M. P.Bendsøe, O.Sigmund: Topology optimization: theory, methods, and applications, Springer (2003) Search in Google Scholar

8 M. P.Bendsøe, O.Sigmund: Material interpolation schemes in topology optimization, Arch Appl. Mech.69 (1999), pp. 635654 Search in Google Scholar

9 M. P.Bendsøe, N.Kikuchi: Generating optimal topologies in structural design using a homogenization method, Computer Methods in Applied Mechanics and Engineering71 (1988), pp. 197224 Search in Google Scholar

10 Y. L.Mei; X. M.Wang: A level set method for structural topology optimization and its applications, Adv Eng Softw35 (2004), pp. 415441 Search in Google Scholar

11 Z.Luo, L. Y.Tong: A level set method for shape and topology optimization of large-displacement compliant mechanisms, Int J Numer Methods Eng76 (2008), pp. 86289210.1002/nme.2352 Search in Google Scholar

12 K. J.Lu, S.Kota: Compliant Mechanism Synthesis for Shape-Change Applications Preliminary Results, Proc. of the Conf. Modeling Signal Processing and Control Conference, SPIE 2002, San Diego (2002), pp. 16117210.1117/12.475218 Search in Google Scholar

13 K. J.Lu, S.Kota: Design of Compliant Mechanisms for Morphing Structural Shapes, Journal of Intelligent Materials Systems and Structures14 (2003), pp. 37939110.1177/1045389X03035563 Search in Google Scholar

14 Y. M.Xie, G. P.Steven: A simple evolutionary procedure for structural optimization, Computers and Structures49 (1993), pp. 88589610.1016/0045-7949(93)90035-C Search in Google Scholar

15 Y. M.Xie, G. P.Steven: Evolutionary Structural Optimization, Springer (1997) Search in Google Scholar

16 G.Rozvany: A critical review of established methods of structural topology optimization, Struct Multidiscipl Optim, 37 (2008), pp. 21723710.1007/s00158-007-0217-0 Search in Google Scholar

17 G. K.Annanchasuresh: Optimal Synthesis Methods for MEMS, Kluwer Academic Publishers (2003) Search in Google Scholar

18 ANSYS Inc.: Theory Reference Release 11.0 (2007) Search in Google Scholar

19 M.Erdogan; G.Ibrahim: The Finite Element Method and Applications in Engineering Using ANSYS, Springer (2006) Search in Google Scholar

20 B.Hoxhold, M. R.Kirchhoff, S.Bütefisch, S.Büttgenbach: SMA driven micro grippers combining piezo-resistive gripping force sensors with EPON SU-8 mechanics; Proc. XX Eurosensors, 2 (2006), Göteborg (2006) 190191 Search in Google Scholar

21 L.Dellmann, S.Roth, C.Beuret, G.Racine, M.Lorenz, P.Despont, N.Vettiger, 22 F.Rooij: Sensors Actuators A70 (1998), pp. 4247 Search in Google Scholar

22 H.Sato, H.Matsumura, S.Keino, S.Shoji: An all SU-8 microfluidic chip with built-in 3D fine microstructures, Journal of Micromechanics and Microengineering, 16 (2006), pp. 2318232210.1088/0960-1317/16/11/010 Search in Google Scholar

23 H.Khoo, K.Liu, F.Tseng: J Micromech and Microeng13, (2003), pp. 822831 Search in Google Scholar

24 SU-8 Photoresists Formulations 50–100 Datasheets, Microchem Corp. (2000), http://www.microchem.com) Search in Google Scholar

25 G. K.Ananthasuresh, S.Kota, N.Kikuchi: Strategies for systematic synthesis of compliant MEMS, Proc. ASME Winter Annual Meeting, Symposium on MEMS, Dynamics Systems and Control, DSC-Vol. 55-2, Chicago (1994), pp. 677686 Search in Google Scholar

Published Online: 2013-05-26
Published in Print: 2010-03-01

© 2010, Carl Hanser Verlag, München