Abstract
By definition, Functionally graded materials (FGM) are new advanced composite materials which are used to produce components featuring engineered gradual transitions in microstructure and/or composition. FGMs permit tailoring of material composition so as to derive maximum benefits from their inhomogeneity. The aim of the study behind this contribution is to optimize the composition variation between the ceramic and the metal in order to minimize the maximum stress concentration around the hole in a plate made of FGMs in case of the plate is subjected to pressure, heating or both pressure and heating. The finite element method (FEM) has been used to optimize the material composition of functionally graded materials made from Al 1100 as the metal portion and SiC as the ceramic portion using the ANSYS package. The objective has been to minimize the stress concentration factor around a hole in a plate expressed by the ratio between the principal stress calculated by the ANSYS and the applied stress at different volume fractions of the metal and the ceramic. The investigations have shown that when applying pressure or heating to the plate the optimum for minimizing the stress concentration is to have a ceramic-rich plate and when the plate is subjected to both pressure and heating the optimality is to have a metal-rich plate.
Kurzfassung
Optimierung der Zusammensetzung von Gradientenwerkstoffen für gelochte Platten. Definitionsgemäß sind Gradientenwerkstoffe (Functionally Graded Materials (FGM)) neue Verbundwerkstoffe die zur Produktion von Komponenten verwendet wwerden, die graduelle Übergänge in ihrer Mikrostruktur und/oder Zusammensetzung aufweisen. Gradientenwerkstoffe lassen einen Zuschnitt der Materialzusammensetzung in einer Weise zu, dass aus ihrer Inhomogenität die größten Vorteile gezogen werden können. Die diesem Beitrag zugrunde liegende Studie hatte zum Ziel, die Variation der Verbindung zwischen Keramik und Metal so zu optimieren, dass die maximale Spannung in einer Platte aus einem solchen Gradientenwerkstoff, die Druck und Temperatur sowie beiden Beanspruchungen zusammen ausgesetzt wurde, zu minimieren. Um die Komposition eines Werkstoffes aus Al 1000 als metallischen und SiC als keramischen Anteil zu optimieren, wurde die Finite Elemente Methode (FEM) unter Verwendung des Programmpaketes ANSYS angewendet mit dem Ziel, den Spannungskonzentrationsfaktor um ein Loch in einer Plate zu minimieren. Der Spannungskonzentrationsfaktor wurde hierbei als das Verhältnis zwischen der numerisch berechneten Hauptspannung und der aufgebrachten Spannung definiert, wobei verschiedene Volumenanteile des Metals und der Keramik betrachtet wurden. Die Untersuchungen zeigten, dass unter einer Druckoder Temperaturbeanspruchung das Optimum hinsichtlich der Minimierung der Spannungskonzentration sich dann einstellt, wenn bei Druck- oder Temperaturbeanspruchung eine Platte mit einem hohen Keramikanteil und bei Koppelung beider Beanspruchungen eine Platte mit einem hohen Metallanteil vorliegt.
Refrences
1 A. J.Goupee, S. S.Vel: Two-dimensional optimization of material composition of functionally graded materials using meshless analyses and a genetic algorithm, Comput. Methods Appl. Mech. Eng.195 (2006), pp. 5926–5948Search in Google Scholar
2 M.Finto, S.Suresh, C.Bull, S.Sampath: Curvature changes during thermal cycling of a compositionally graded Ni-Al2O3 multi layered material, Materials Science and Engineering A205 (1996), pp. 59–71Search in Google Scholar
3 M.Finto, S.Suresh: Small and large deformation of thick and thin-film multi-layers: effect of layer geometry, plasticity and compositional gradients, J. Mech. Phys. Solids44 (1996), pp. 683–721Search in Google Scholar
4 E. C. N.Silva, G. H.Paulino: Topology optimization of functionally graded structures, Proc. of the 6th World Congresses of Structural and Multidisciplinary Optimization, Rio de Janeiro, Brazil, (2005)Search in Google Scholar
5 P.-L.Cao, B.-C.Liu, K.Yin, Z.Zhang: Optimization design and residual thermal stress analysis of PDC functionally graded materials, Journal of Zhejiang University Science A7 (2006), No. 8, pp. 1318–1323Search in Google Scholar
6 F.Bobaru, H.Jiang: Optimization of functionally graded materials with temperature dependent properties. A mesh-free solution, Report of the University of Nebraska- Lincoln, NE 68588-0526, USASearch in Google Scholar
7 H.S.Hedia. N.-A.Mahmoud: Design optimization of functionally graded dental implant, Bio-Medical Materials and Engineering00 (2003), pp. 1–11Search in Google Scholar
8 T.Fujimoto, N.Noda: Crack propagation in a functionally graded plate under thermal shock, Archive of Applied Mechanics70 (2000), pp. 377–386Search in Google Scholar
9 N. A.Mahmoud: Reduction of thermal stresses by developing two-dimensional functionally graded materials, International Journal of Solids and Structures40 (2003), pp. 7339–735610.1016/j.ijsolstr.2003.08.017Search in Google Scholar
10 ANSYS User's Manual, Version 5.6Search in Google Scholar
© 2010, Carl Hanser Verlag, München