Abstract
This paper presents a linear model for the dry sliding wear behaviour of a PM copper based brake lining material with the addition of MoS2. The model was based on experimental results related to standard pin-on-disk wear tests of the brake material with various MoS2 contents at constant applied load and sliding velocity. The wear load was considered as the input parameter, whereas the wear rate and friction of coefficient as the output parameters. The predicted results were compared with experimental results by simulating a linear process for each MoS2 content of the material, and it was found that the results obtained from such linear process modelling were satisfactory. The results showed that the linear process model represents an useful tool for the prediction of the brake lining material properties, and that it is more effective than timeconsuming experimental procedures.
Kurzfassung
Ein lineares Modell für das Verschleißverhalten eines pulvermetallurgisch hergestellten Bremsbelag- Werkstoffes. Im vorliegenden Beitrag wird über ein lineares Model für das Verschleißverhalten unter trockenem Abgleiten bei einem pulvermetallurgisch hergestellten Bremsbelag-Werkstoffes auf Kupferbasis und mit MoS2-Zusatz berichtet. Das Model basiert auf experimentellen Ergebnissen mit Standard- Stift-Scheibe-Versuchen des Bremsbelagwerkstoffes mit verschiedenen MoS2-Gehalten unter konstanter Beanspruchung und Abgleitgeschwindigkeit. Die Verschleißbeanspruchung wurde dabei als Inputparameter behandelt, während die Verschleißrate und der Reibkoeffizient die Outputparameter darstellten. Die mit dem Modell unter Simulation eines linearen Prozesses vorhergesagten Ergebnisse wurden mit experimentellen Resultaten für jeden MoS2-Gehalt verglichen und es ergaben sich zufrieden stellende Ergebnisse der Simulationen des linearen Prozesses. Die Ergebnisse zeigten, dass die lineare Modellierung ein nützliches Hilfsmittel für die Vorhersage der Eigenschaften des Bremsbelag-Werkstoffes ist und sich gegenüber zeitraubenden Experimenten als effektiv erweist.
Refrences
1 G.McIntyre, R.Holinski: Improvement o friction brake lining performance, Proc. of the 21st Annual Brake Colloquium and Exhibition, SAE Technical Paper, 2003-01-331610.4271/2003-01-3316Search in Google Scholar
2 Y.Lu: A combinatorial approach for automotive friction materials, effects of ingredients on friction performance, Compos. Sci. Technol.66 (2006), pp. 591–59810.1016/j.compscitech.2005.05.032Search in Google Scholar
3 M. H.Cho, S. J.Kim, H.Jang: Effects of ingredients on tribological characteristics of brake lining: An experimental case study, Wear258 (2005), pp. 1682–1687Search in Google Scholar
4 S.Zang, F.Wang: Comparison of friction and wear performances of brake material dry sliding against two aluminum matrix composites reinforced with different SiC particles, Mater. Proces. Tech.182 (2007), pp. 122–127Search in Google Scholar
5 R. M.German: Powder Metallurgy Science, Princton MPIF, USA (1994)Search in Google Scholar
6 M.Boz, A.Kurt: The effect of Al2O3 on the friction performance of automotive brake friction materials, Tribol. Int.40 (2007), pp. 1161–1169Search in Google Scholar
7 K.Elalem, D. Y.Li: Dynamical simulation of an abrasive wear process, J. Comput-Aided Mater.6 (1999), pp. 185–193Search in Google Scholar
8 N.Fillot, I.Iordanof, Y.Berthier: Wear modeling and the third body concept, Wear262 (2006), pp. 949–957Search in Google Scholar
9 D.Aleksendric: Neural network prediction of brake friction materials wear, Wear268 (2010), pp. 117–12510.1016/j.wear.2009.07.006Search in Google Scholar
10 A. R.AbuBakar, H.Ouyang: Wear prediction of friction material and brake squeal using the finite element method, Wear (264) 2008, pp. 1069–107610.1016/j.wear.2007.08.015Search in Google Scholar
11 D.Aleksendric, C.Duboka: Prediction of friction material characteristics using artificial neural networks-cold performance, Wear (261) 2006, pp. 269–28210.1016/j.wear.2005.10.006Search in Google Scholar
12 I.Istif: Identification and position control of a system consisting of a proportional valve and a hydraulic cylinder, PhD Thesis Istanbul Tech. Univ. (2003)Search in Google Scholar
13 I.Eker: Second order sliding mode control with experimental application, ISA T.49 (2010), pp. 394–40510.1016/j.isatra.2010.03.010Search in Google Scholar PubMed
14 L.Ljung: System identification – Theory for the user, 2nd Ed., Upper Saddle River: PTR Prentice Hall (1999)Search in Google Scholar
15 D.Uzunsoy, E.Kelesoglu, Y.Eraslan: Contribution of MoS2 additives to the microstructure and properties of PM copper based brake lining material, Materials Testing – Materials and Components, Technology and Application51 (2009), pp. 318–322Search in Google Scholar
16 L.Ljung: System identification and simple process models, Proc. of the International Symposium on Advanced Control of Industrial Processes, Kumamoto, Japan (2002), pp. 12Search in Google Scholar
© 2010, Carl Hanser Verlag, München