Skip to content
Accessible Unlicensed Requires Authentication Published by De Gruyter May 26, 2013

The Indentation Size Effect on the Micro-Hardness of Sea Mollusc Shell Structures

Die Auswirkungen der Indentorgröße auf die Mikrohärte von Seemuschelstrukturen
Tomislav Filetin, Sanja Šolić and Irena Žmak
From the journal Materials Testing

Abstract

The Vickers micro-hardness of three different sea mollusc shell structures has been determined as a function of the indentation load. The following shells from the Adriatic Sea have been investigated: abalone (Haliotis tuberculata), smooth clam (Callista chione), and warty venus (Venus verrucosa). The results show that the measured micro-hardness depends on the load for all of the investigated seashell structures, which indicates the influence of the indentation size effect (ISE). The load dependence of micro-hardness has been analyzed by using the known Meyer's Law, the proportional specimen resistance model (PSR), and the modified proportional specimen resistance model. The best correlation between measured values and used models has been achieved by using the modified PSR model.

Kurzfassung

Für den vorliegenden Beitrag wurde die Vickers-Härte von drei verschiedenen Seemuschelstrukturen als Funktion der Eindringlast bestimmt. Hierzu wurden die folgenden Muscheln des Adriatischen Meeres untersucht: Seeohr (Haliotis tuberculata), Weiche Venusmuschel (Callista chione) und Warzige Venusmuschel (Venus verrucosa). Die Ergebnisse zeigen, dass die gemessene Mikrohärte bei allen untersuchten Muschelstrukturen von der aufgebrachten Last abhängt, was auf einen Einfluss der Indentorgröße (Indentation Size Effect — ISE) hinweist. Die Lastabhänigkeit der Mikrohärte wurde mittels des bekannten Meyer'schen Gesetzes, des proportionalen Probenwiderstandsmodells und dem modifizierten proprotionalen Probenwiderstandmodells analysiert. Die beste Korrelation zwischen den gemessenen Werten und den Modellierungen ergab sich für das modifizierte proportionale Probenwiderstandsmodell.


Tomislav Filetin, born 1949 in Zagreb, graduated at the Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, in 1973, where he also earned the M.Sc. degree in 1979 and the Ph.D. degree in 1986. He is a full-time professor at the Department of Materials. His scientific and professional interests are in the following fields: selection and optimal use of advanced materials and processes, simulation and modelling of material properties and the heat treatment processes, cellular materials. He is the author, co- author or editor of 13 books, and more then 140 scientific or professional papers. He is a collaborative member of the Croatian Academy of Sciences and Arts and a full member of the Croatian Academy of Engineering.

Sanja Šolić, born 1975 in Vienna, graduated at the Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb in 2001. Since 2002 she has been working as a Ph.D. student and a teaching assistant at the Department of Materials at the Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb. Her scientific work and professional interests include research in the field of material science and engineering, particularly heat treatment, surface engineering, mechanical testing, and tribology. She is the co-author of 16 scientific or professional papers.

Irena Žmak, born 1974 in Pula, graduated with honours in Mechanical Engineering in 1998, earned the Master of Science degree in 2003 and the Ph.D. degree in 2009, all at the Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb. She is a teaching assistant at the Department of Materials. Her scientific and professional interests are in the following fields: simulation and modelling of material properties and the process parameters, material selection, cast iron, and composite materials. She is the co-author of three book chapters, and 19 scientific or professional papers.


References

1 J. D.Currey: Mechanical properties of mollusc shell; Symposia of the Society for experimental biology, Cambridge University Press, Cambridge (1980)Search in Google Scholar

2 G.Mayer, M.Sarikaya: Rigid biological composite materials: Structural examples for biomimetic design, Experimental Mechanics, 42 (2002), No. 4, pp. 39540310.1007/BF02412144Search in Google Scholar

3 M.Sarikaya, H.Fong, J. M.Sopp, K. S.Katti, G.Mayer, A.Smyth (Ed.): Nanomechanical Design of Materials through Biology. Proceedings of the 15th ASCE Engineering Mechanics Conference, Columbia University, New York (2002), p. 9Search in Google Scholar

4 P.Calvert, J.Cesarano, H.Chandra, H.Denhim, S.Kasichainula, R.Vaidyanathan: Toughness in synthetic and biological multilayered systems, Phil. Trans. R. Soc. Lond. A360 (2002), pp. 19920910.1098/rsta.2001.0925Search in Google Scholar

5 A. A.Abdala, D. L.Milius, D. H.Adamson, I. A.Aksay, R. K.Prud'homme: Inspired by abalone shell: Strengthening of porous ceramics with polymers, Science and Engineering90 (2004), pp. 384385Search in Google Scholar

6 K. S.Vecchio: Synthetic multifunctional metallic-intermetallic laminate composites, JOM57 (2005) No. 3, pp. 253110.1007/s11837-005-0229-4Search in Google Scholar

7 F. A.Burgman, X. L.Xaio, D. G.McCulloch, D. R.McKenzie, M. M. M.Bilek, B. K.Gan, L.Ryves: Relationship between microstructure, stress and hardness in multilayer coatings, Micros. Microanal. 11 Suppl.2 (2005), pp. 17621763Search in Google Scholar

8 G.Mayer: New classes of tough composite materials - Lessons from natural rigid biological systems, Materials Science and Engineering C26 (2006), pp. 1261126810.1016/j.msec.2005.08.031Search in Google Scholar

9 P.Podsiadlo, Z.Liu, D.Paterson, P. B.Messersmith, N. A.Kotov: Fusion of seashell nacre and marine bioadhesive analogs: High-strength nanocomposite by layer-by-layer assembly of clay and 1-3,4-dihydroxyphenylalanine polymer, Adv. Mater.19 (2007), pp. 94995510.1002/adma.200602706Search in Google Scholar

10 R.Narayanan, S.Dutta, S. K.Seshadri: Hydroxy apatite coatings on Ti-6Al-4V from seashell, Surface & Coatings Technology200 (2006), pp. 4720473010.1016/j.surfcoat.2005.04.040Search in Google Scholar

11 M. A.Meyers, A. Y. M.Lin, Y.Seki, P.Chen, B. K.Kad, S.Bodde: Structural biological composites: An overview, JOM58 (2006), pp. 354110.1007/s11837-006-0138-1Search in Google Scholar

12 R. Z.Wang, Z.Suo, A. G.Evans, N.Yao, I. A.Aksay: Deformation mechanisms in nacre, J. Mater. Res.16 (2001), pp. 2485249310.1557/JMR.2001.0340Search in Google Scholar

13 A. G.Evans, Z.Suo, R. Z.Wang, I. A.Aksay, M. Y.He, J. W.Hutchinson: Model for the robust mechanical behavior of nacre, J. Mater. Res.16 (2001), pp. 2475248410.1557/JMR.2001.0339Search in Google Scholar

14 F.Barthelata, H.Tanga, P. D.Zavattieri, C.-M.Li, H. D.Espinosa: On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure, Journal of the Mechanics and Physics of Solids55 (2007), pp. 30633710.1016/j.jmps.2006.07.007Search in Google Scholar

15 F. D.Fleischlia, M.Dietikera, C.Borgiaa, R.Spolenak: The influence of internal length scales on mechanical properties in natural nanocomposites: A comparative study on inner layers of seashells, Acta Biomineralia4 (2008), No. 6, pp. 1694170610.1016/j.actbio.2008.05.029Search in Google Scholar

16 F.Barthelat, H. D.Espinosa: An experimental investigation of deformation and fracture of nacre-mother of pearl, Experimental Mechanics47 (2007), pp. 31132410.1007/s11340-007-9040-1Search in Google Scholar

17 D. R.Katti, K. S.Katti, J. M.Sopp, M.Sarikaya: 3D finite element modeling of mechanical response in nacre-based hybrid nanocomposites, Computational and Theoretical Polymer Science11 (2001), pp. 39740410.1016/S1089-3156(01)00012-5Search in Google Scholar

18 D.Tabor: The Hardness of Metals, Oxford University Press, Oxford (1951)Search in Google Scholar

19 J.Gong, Z.Guan: Load dependence of low-load Knoop hardness in ceramics: a modified PRS model, Mater. Lett., 47 (2001), pp. 14014410.1016/S0167-577X(00)00225-1Search in Google Scholar

20 X. J.Ren, R. M.Hooper, C.Griffiths, J. L.Henshall: Indentation size effect in ceramics: correlation with H/E, J. Mater. Sci. Let., 22 (2003), pp. 1105110610.1023/A:1024947210604Search in Google Scholar

21 J.Gong, J.Wu, Z.Guan: Examination of the indentation size effect in low-load Vickers hardness testing of ceramics, J. Eur. Ceram. Soc.19 (1999), pp. 2625263110.1016/S0955-2219(99)00043-6Search in Google Scholar

22 U.Kolemen: Analysis of ISE in micro-hardness measurements of bulk MgB2 superconductors using different models, J. Alloys Compd.425 (2006), pp. 42943510.1016/j.jallcom.2006.01.075Search in Google Scholar

23 M.Lalic´, L.Ćurkovicć: Analysis of the ISE on hardness of CIP-Al2O3 ceramics using different models. I. Kucuk, M. El-Tarhuni, I. Sadek, J. Abdulla, M. Anabtawi, M. Al Jarrah (Eds.): Proceedings of the Third International Conference on Modeling, Simulation and Applied Optimization, Sharjah (2009), p. 3Search in Google Scholar

24 J.Andrejovska, J.Dusza: Hardness and Indentation Load/Size Effect in Silicon based Ceramics. Proceedings of the NANOCON 2009, Ronov pod Radho‰tûm (2009), p. 6Search in Google Scholar

25 H.Li, R.C.Bradt: The micro-hardness indentation load/size effect in rutile and cassiterite single crystals, J. Mater. Sci.28 (1993), pp. 91792610.1007/BF00400874Search in Google Scholar

26 O.Sahin, O.Uzun, U.Kolemen, N.Ucar: Vickers microindentation hardness studies of β-Sn single crystal, Mater. Characterization58 (2007), pp. 19720410.1016/j.matchar.2006.04.023Search in Google Scholar

27 S.Sebastian, M. A.Khadar: Micro-hardness indentation size effect studies in 60B2O3-(40-x)PbO-xMCl2 and 50B2O3-(50-x)PbO-xMCl2 (M=Pb, Cd) glasses, J. Mater. Sci.40 (2205), pp. 1655165910.1007/s10853-005-0666-zSearch in Google Scholar

28 H.Li, Y. H.Han, R. C.Bradt: Knoop micro-hardness of single crystal sulphur, J. Mater. Sci.29 (1994), pp. 5641564510.1007/BF00349959Search in Google Scholar

29 J.Sˇubaric´: Mechanical and thermal properties of the sea shells, Master thesis, Faculty of Mechanical Engineering and Naval Architecture University of Zagreb, Zagreb (2008) (in Croatian)Search in Google Scholar

30 H. M.Leung, S. K.Sinha: Scratch and indentation test on seashells, Tribology International42 (2009), pp. 404910.1016/j.triboint.2008.05.015Search in Google Scholar

31 A. P.Jackson, J. E. V.Vincent, R. M.Turner: Comparison of nacre with other ceramic composites, J. Mater. Science25 (1990), pp. 3173318510.1007/BF00587670Search in Google Scholar

32 A. P.Jackson, J. E. V.Vincent, R. M.Turner: The mechanical design of nacre, Proc. of the R. Soc. Lond. B, 234 (1988), pp. 415430Search in Google Scholar

33 M.Sarikaya, I. A.Aksay: Mother-of-pearl: structure, mechanical properties, and formation, Biopolymers1 (1992), pp. 125Search in Google Scholar

Published Online: 2013-05-26
Published in Print: 2011-02-01

© 2011, Carl Hanser Verlag, München