Abstract
The present paper focuses on two techniques, namely regression and neural network, for predicting tool wear. Predicted values of tool wear by both techniques were compared with experimental values. Also, the effects of the main machining variables on tool wear have been determined. The metal volume removed (MVR) was taken as response (output) variable and cutting speed, feed rate, depth of cut and hardness were taken as input parameters, respectively. The relationship between tool wear and machining parameters was found out by direct measurement of the tool wear by MVR. The results showed the ability of regression and neural network models to predict the tool wear, accurately.
Kurzfassung
Die diesem Beitrag zugrunde liegende Studie fokussiert sich auf zwei Technologien, und zwar der Regressionsanalyse und Neural Network Modellierungen, um den Werkzeugabtrag vorherzusagen. Die mit beiden Technologien vorhergesagten Abtragswerte wurden mit experimentellen Ergebnissen verglichen. Außerdem wurden die Effekte der Haupt-Maschinenvariablen auf den Werkzeugabtrag bestimmt. Der Metallvolumenabtrag (metal volume removed – MVR) wurde dabei als Antwort bzw. Output-Variable und die Schnittgeschwindigkeit, Vorschubrate, Schnitttiefe und Härte wurden dabei als Input-Parameter herangezogen. Es wurde ein Bezug zwischen dem Werkzeugabtrag und den Maschinenparametern hergestellt, in dem der Werkzeugabtrag direkt mittels MVR gemessen wurde. Die Ergebnisse zeigen die Möglichkeit der Regression und der Neural Network Modelle zur direkten Vorhersage des Werkzeugabtrages.
References
1 S.K.Choudhury, I.V.Appa Rao: Optimization of cutting parameters for maximizing tool life, Machine Tools & Manufacture39 (1999), pp. 343–35310.1016/S0890-6955(98)00028-5Search in Google Scholar
2 L.Dan, J.Mathew: Tool wear and failure monitoring techniques for turning-a review, International J. of Machine Tools & Manufacturing30 (1990), No. 4, pp. 579–59810.1016/0890-6955(90)90009-8Search in Google Scholar
3 G.H.Lim: Tool wear monitoring in machine turning, Journal of Materials Processing Technology51 (1995), pp. 2536–254010.1016/0924-0136(94)01354-4Search in Google Scholar
4 Y.Koren, A.G.Ulsoy, K.Danai: Tool wear and breakage detection using a process model, Annals CIRP35 (1986), No. 1, p. 283–28810.1016/S0007-8506(07)61889-7Search in Google Scholar
5 K.C.Fan, Y.H.Chao: In process dimensional control of the workpiece during turning, Prec. Eng.13 (1991)No. 1, pp. 27–3210.1016/0141-6359(91)90218-8Search in Google Scholar
6 J.E.Kaye, D.H.Yan, N.Popplewell, S.Balakrishnan: Predicting tool flank wear using spindle speed change, International Journal of Machine Tools & Manufacturing35 (1995), No. 9, pp. 1309–131210.1016/0890-6955(94)E0031-DSearch in Google Scholar
7 W.L.Jin, P.K.Venuvinıd, X.Wang: An optical fibre sensor based cutting force measuring device, Int. J. Mach. Tools & Manufact35 (1995); No. 6, pp. 877–88310.1016/0890-6955(94)E0025-ESearch in Google Scholar
8 J.Kopac, S.Sali: Tool wear monitoring during the turning process, Journal of Materials Processing Technology113 (2001), pp. 312–31610.1016/S0924-0136(01)00621-5Search in Google Scholar
9 J.I.El Gomayel, K.D.Bregger: Online tool wear sensing for turning operations, J. Eng Ind.108 (1986), pp. 44–4910.1115/1.3187040Search in Google Scholar
10 I.A.Choudhury, M.A.El-Baradie: Tool life prediction model by design of experiments for turning high strength steel (290 BHN), Journal of Materials Processing Technology77 (1998), pp. 319–32610.1016/S0924-0136(97)00435-4Search in Google Scholar
11 S.K.Choudhury, V.K.Jain, V.V.Rama Rao: On-line monitoring of tool wear in turning using a neural network, International Journal of Machine Tools & Manufacture39 (1999), pp. 489–504.10.1016/S0890-6955(98)00032-7Search in Google Scholar
12 R. G.Silva, K. J.Baker, S. J.Wilcox, R. L.Reuben: The adaptability of a tool wear monitoring system under changing cutting conditions, Mechanical Systems and Signal Processing14 (2000), No. 2, pp. 287–29810.1006/mssp.1999.1286Search in Google Scholar
13 A.Ghasempoor, J.Jeswiet, T.N.Moore: Real time implementation of on-line tool condition monitoring in turning, International Journal of Machine Tools & Manufacture39 (1999), pp. 1883–190210.1016/S0890-6955(99)00035-8Search in Google Scholar
14 S.K.Choudhury, G.Bartarya: Role of temperature and surface finish in predicting tool wear using neural network and design of experiments, International Journal of Machine Tools & Manufacture43 (2003), pp. 747–75310.1016/S0890-6955(02)00166-9Search in Google Scholar
15 R.H.Myers, D.C.Montgomery: Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley & Sons Inc., New York (2002)Search in Google Scholar
16 S.C.Juang, Y.S.Tarng, H.R.Li: A comparison between the back propagation-counter propagation networks in the modeling welding process, Journal of Materials Processing Technology75 (1998), pp. 54–6210.1016/S0924-0136(97)00292-6Search in Google Scholar
17 J. A.Freeman, D. M.Skapura: Neural Networks: Algorithms, Application and Programming Techniques, Wesley, New York (1991)Search in Google Scholar
© 2012, Carl Hanser Verlag, München