Accessible Unlicensed Requires Authentication Published by De Gruyter May 26, 2013

Pt-Rh Alloys: Investigation of Creep Rate and Rupture Time at High Temperatures

Pt-Rh Legierungen: Untersuchung der Kriechgeschwindigkeit und Zeitstandsfestigkeit bei hohen Temperaturen
Biserka Trumić, Lidija Gomidželović, Saša Marjanović, Vesna Krstić, Aleksandra Ivanović and Silvana Dimitrijević
From the journal Materials Testing

Abstract

The results of experimental investigation of creep rate and rupture time of the alloys of Pt-Rh system are presented in this paper. Selected alloys with 7–40 wt.-% Rh content were examined using a universal device for tensile testing of materials at high temperatures, and monitoring structure changes of the samples by electron microscopy. Investigations were performed in the temperature range between 1200°C and 1700°C at a stress between 2 MPa and 15 MPa.

Kurzfassung

Die Ergebnisse einer experimentellen Untersuchung der Kriechrate und der Zeit bis zum Bruch von Legierungen des Pt-Rh-Systems werden im vorliegenden Beitrag vorgestellt. Die ausgewählten Legierungen mit 7Gew.-%-40 Gew.-% Rh wurden in einer Universalzugprüfmaschine bei hohen Temperaturen geprüft und es wurden die Gefügeänderungen mittels Elektronenmikroskopie aufgezeichnet. Die Untersuchungen wurden im Temperaturbereich zwischen 1200 und 1700°C und bei Spannungen zwischen 2 MPa und 15 MPa durchgeführt.


Dr. Biserka Trumić (1966) is senior research fellow at the Institute of Mining and Metallurgy Bor (Serbia). She recieved PhD degree at University of Belgrade, Technical Faculty in Bor (Serbia) in 2001. Research areas: processing of platinum metals, high-temperature catalysis of ammonia on Pt-Rh-Pd catalysts, characterization of alloys.

Dr. Lidija Gomidželović (1974) is researcher at Mining and Metallurgy Institute Bor (Serbia). She recieved PhD degree at University of Belgrade, Technical Faculty in Bor (Serbia) in 2012. Research areas: lead-free solder materials, thermodynamics of alloys, characterization.

Dr. Saša Marjanović (1971) is assistant professor at University of Belgrade, Technical Faculty in Bor (Serbia), department of Metallurgy, where he recieved PhD degree in 2010. Research areas: processing of metals in plastic state, physical metallurgy, materials testing, and metallurgical thermodynamics.

Dr. Vesna Krstić (1969) is researcher at Mining and Metallurgy Institute Bor (Serbia). She recieved PhD degree at University of Cantabria, Santander, Spain in 2005. Research areas: new materials (MCM-41, SBA-15, PILC's), Rh/MCM-41 catalysis, Rh-Sn/MCM-41 catalysis, crotonaldehyde hydrogenation.

Aleksandra Ivanović (1971) is research fellow at the Institute of Mining and Metallurgy Bor (Serbia) and PhD student at the Technical Faculty in Bor, University of Belgrade. Research field: materials science, mathematical modeling, characterization of alloys.

MSc Silvana Dimitrijević (1972) is research fellow at the Institute of Mining and Metallurgy Bor (Serbia) and PhD student at the Technical Faculty in Bor, University of Belgrade. Research field: electrometallurgical processes of copper and noble metals, solvent extraction of rhodium and electrodeposition of decorative gold coatings.


References

1 H.Gavin: Platinum group metals research from a global perspective, Platinum Met. Rev.54 (2010), pp. 16617110.1595/147106710X500125Search in Google Scholar

2 E.Preston: Platinum in the glass industry, Platinum Met. Rev.4 (1960), pp. 4855Search in Google Scholar

3 B.Fischer: Reduction of platinum corrosion in molten glass, Platinum Metals Rev.36 (1992), No. 1, pp. 1425Search in Google Scholar

4 Y.Ning, Z.Yang, H.Zhao: Platinum recovery by palladium alloy catchment gauzes in nitric acid plants, Platinum Met. Rev.4 (1996), pp. 80–87Search in Google Scholar

5 N.Yuantao, Y.Zhengfen: Platinum loss from alloy catalyst gauzes in nitric acid plants, Platinum Met. Rev.43 (1999), pp. 6269Search in Google Scholar

6 B.Trumić, D.Stanković, V.Trujić: Examining the surfaces in used platinum catalysts, Journal of Mining and Metallurgy 45 B (2009), No. 1, pp. 79–87Search in Google Scholar

7 B.Wu, G.Liu: Platinum: Platinum-rhodium thermocouple wire, Platinum Met. Rev.41 (1997), pp. 8185Search in Google Scholar

8 M.Funabikia, T.Yamadaa, K.Kayanoa: Auto exhaust catalysts, Catal. Today10 (1991), pp. 3343Search in Google Scholar

9 T.Biggs, S. S.Taylor, E.van der Lingen: The hardening of platinum alloys for potential jewellery application, Platinum Met. Rev.49 (2005), pp. 215Search in Google Scholar

10 J. C.Wright: Jewellery-related properties of platinum: Low thermal diffusivity permits use of laser welding for jewellery manufacture, Platinum Metals Rev.46 (2002), 46, No. 2, pp. 66–72Search in Google Scholar

11 F.Xiao, F.Zhao, D.Mei, Z.Mo, B.Zeng: Non enzymatic glucose sensor based on ultrasonic-electrodeposition of bimetallic PtM (M = Ru, Pd and Au) nanoparticles on carbon nanotubes-ionic liquid composite film, Biosens. Bioelectron.24 (2009), pp. 34813486Search in Google Scholar

12 J.Luyten, J.De Keyzer, P.Wollants, C.Creemers: Construction of modified embedded atom method potentials for the study of the bulk phase behaviour in binary Pt-Rh, Pt-Pd, Pd-Rh and ternary Pt-Pd-Rh alloys, Calphad33 (2009), pp. 370376Search in Google Scholar

13 K. T.Jacob, S.Priya, Y.Waseda: Thermodynamic properties and phase equilibria for Pt-Rh alloys, Metall. Mater. Trans. 29 A (1998), pp. 1545–1550Search in Google Scholar

14 Q.Zhang, D.Zhang, S.Jia, W.Shong: Microstructure and properties of some dispersion strengthened platinum alloys, Platinum Met. Rev.39 (1995), pp. 167171Search in Google Scholar

15 Z. M.Rdzawski, J. P.Stobrawa: Microstructure and properties of new Pt-Rh based alloys for high temperature applications, J. Mater. Process. Tech.153–154 (2004), pp. 681687Search in Google Scholar

16 G. L.Selman, J. G.Day, A. A.Bourne: Dispersion strengthened platinum, Platinum Metals Rev.18 (1974), No. 2, pp. 4657Search in Google Scholar

17 R. B.McGrath, G. C.Badcock: New dispersion strengthened platinum alloy, Platinum Metals Rev.31 (1987), No. 1, pp. 811Search in Google Scholar

18 G. L.Selman, A. A.Bourne: Dispersion-strengthened rhodium-platinum, Platinum Metal Rev.20 (1976), No. 3, pp. 8690Search in Google Scholar

19 P.Battaini: Microstructure analysis of selected platinum alloys, Platinum Met. Rev.55 (2011), pp. 7483Search in Google Scholar

20 B.Fischer, A.Behrends, D.Freund, D.Lupton, J.Merker: High temperature mechanical properties of the Platinum group metals: Stress-rupture strength and creep behaviour at extremely high temperatures, platinum Metals Rev.43 (1999), No. 1, pp. 1828Search in Google Scholar

21 J.Merker, D.Lupton, M.Töpfer, H.Knake: High temperature mechanical properties of the platinum group metals: Elastic properties of platinum, rhodium and iridium and their alloys at high temperatures, Platinum Metals Rev.45 (2001), No. 2, pp. 7482Search in Google Scholar

22 F. J.Vidal-Iglesias, J.Solla-Gullon, V.Montiel, J. M.Feliu, A.Aldaz: Screening of electrocatalysts for direct ammonia fuel cell: Ammonia oxidation on PtMe (Me: Ir, Rh, Pd, Ru) and preferentially oriented Pt(1 0 0) nanoparticles, J. Power Sources171 (2007), pp. 448456Search in Google Scholar

23 (1975)Search in Google Scholar

24 (1987)Search in Google Scholar

25 Search in Google Scholar

26 C. J.Smithells, E. A.Brandes: Metals Reference Book, Butterworths, London and Boston (1976)Search in Google Scholar

Published Online: 2013-05-26
Published in Print: 2013-01-01

© 2013, Carl Hanser Verlag, München