Accessible Unlicensed Requires Authentication Published by De Gruyter May 26, 2013

A Study on Wear Testing of Orthopedic Implant Materials in Simulated Body Fluid

Verschleißtests an orthopädischen Implant-Werkstoffen in simulierter Körperflüssigkeit
Erdem Atar
From the journal Materials Testing


In this study, the sliding wear behaviour of the materials utilized in manufacturing of load-bearing orthopedic implants (316 L, Ti6Al4V, and CoCrMo nickel alloys) was examined by a reciprocating wear tester under ceramic-on-metal configuration in a simulated body fluid (SBF). During the tests the generated wear debris were transferred into the SBF and increased its optical density. In accordance with its poor wear resistance, Ti6Al4V alloy provided a large amount of wear debris transfer into the SBF along with the heavy material attachment to the contact surface of the counterface. Dissolution of wear debris led to an increase of the metal ion concentration in the SBFs. Even though few wear debris were generated, trace elements were detected in the SBFs of the 316 L and CoCrMo alloy, besides the main elements.


Für die diesem Beitrag zugrunde liegende Studie wurde das Gleitverschleißverhalten von Materialien untersucht, die zur Herstellung von lasttragenden orthopädischen Implantaten verwendet werden (Stahl 316 L, Ti6Al4V und CoCrMo-Legierungen), indem ein pendelartiger Verschleißtest unter Keramik-Metall-Konfiguration in simulierter Körperflüssigkeit (SBF – Simulated Body Fluid) verwendet wurde. Während der Versuche wurde der Abrieb in die SBF transferiert, wodurch deren optische Dichte anstieg. Übereinstimmend mit ihrem geringen Verschleißwiderstand, wurde von der Ti6Al4V-Legierung ein großer Anteil an Abrieb erzeugt und in die SBF übertragen, im Zusammenhang mit dem aufgebrachten schweren Material, das auf die Kontaktfläche der Gegenseite aufgebracht wurde. Die Auflösung des Abriebes führte zu einem Anstieg der Metallionenkonzentration in den Körperflüssigkeiten. Obwohl ein geringerer Abrieb erzeugt wurde, wurden neben den Hauptelementen Spurenelemente in den SBFs bei der Untersuchung des Stahles 316 L und der CoCrMo-Legierung entdeckt.

Dr. Erdem Atar, born in 1970, graduated from Istanbul Technical University, Turkey, Department of Metallurgical and Materials Engineering in 1994. After receiving his MSc degree from Gebze Institute of Technology in 1997, he received his PhD degree from Istanbul Technical University in 2004 in the field of Materials Science and Engineering. He is continuing his professional career as assistant professor in the Department of Materials Science and Engineering at Gebze Institute of Technology, Turkey. His main research interests include surface modification of metals and alloys as well as tribology.


1 B. J.Park, J. D.Bronzino: Biomaterials: Principles and Applications, CRC Press, London (2003)Search in Google Scholar

2 T.Swee Hin: Engineering Materials For Biomedical Applications, World Scientific Publishing, New Jersey (2004Search in Google Scholar

3 G.Manivasagam, D.Dhinasekaran, A.Rajamanickam: Biomedical implants: Corrosion and its prevention – a review, Recent. Pat. Corros. Sci.2 (2010), pp. 4054Search in Google Scholar

4 S.P.Patterson, R.H.Daffner, R.A.Gallo: Electrochemical corrosion of metal implants, Am. J. Roentgenol.184 (2005), pp. 12191222Search in Google Scholar

5 D.Sharan: The problem of corrosion in orthopedic implant materials, Orthop. Update9 (1999), pp. 15Search in Google Scholar

6 I.Gruppa: Characterization of different materials for corrosion resistance under simulated body fluid conditions, Mater. Charact.49 (2002), pp. 7379Search in Google Scholar

7 J.J.Jacobs, J.L.Gilbert, R.M.Urban: Corrosion of metal orthopedic implants, J. Bone Joint Surg. 80A (1998), pp. 268282Search in Google Scholar

8 M.B.Nasab, M.R.Hassan: Metallic biomaterials of knee and hip – A review, Trends Biomater. Artif. Organs.24 (2010), No. 1, pp. 6882Search in Google Scholar

9 P.A.Revell: The combined role of wear particles, macrophages and lymphocytes in the loosening of total joint prostheses, J.R. Soc. Interface5 (2008), pp. 12631278Search in Google Scholar

10 M.Sundfeldt, L.V.Carlsson, C.B.Johansson, P.Thomsen, C.Gretzer: Aseptic loosening, not only a question of wear: A review of different theories, Acta Orthop.77 (2006), No. 2, pp. 177197Search in Google Scholar

11 J.Alvarado, R.Maldonado, J.Marxuach, R.Otero: Biomechanics of hip and knee prostheses, App. Eng. Mech. Med. (2003), pp. 117Search in Google Scholar

12 M.Caicedo, J.J.Jacobs, N.J.Hallab: Inflammatory bone loss in joint replacements: The mechanisms, J. Musculoskelet. Med.26 (2010), pp. 17Search in Google Scholar

13 M.Caicedo, J.J.Jacobs, N.J.Hallab: Inflammatory bone loss in joint replacements: The key mediators, J. Musculoskelet. Med.26 (2010), pp. 16Search in Google Scholar

14 B.S.Chang, P.R.Brown, A.Sieber, A.Valdevit, K.Tateno, J.P.Kostuik: Evaluation of the biological response of wear debris, Spine J.4 (2004), pp. 239S244SSearch in Google Scholar

15 T.Kokubo, H.Takadama: How useful is SBF in predicting in vivo bone bioactivity, Biomaterials27 (2006), pp. 29072915Search in Google Scholar

16 H.Dong, T.Bell: Enhanced wear resistance of titanium surfaces by a new thermal oxidation treatment, Wear238 (2000), pp. 131137Search in Google Scholar

17 P.A.Dearnley: A brief review of test methodologies for surface-engineered biomedical implant alloys, Surf. Coat. Technol.198 (2005), pp. 483490Search in Google Scholar

18 Y.Yan, A.Neville, D.Dowson, S.Williams, J.Fisher: Tribo-corrosion analysis of wear and metal ion release interactions from metal-on-metal and ceramic-on-metal contacts for the application in artificial hip prostheses, Proc. IMechE 222 Part J: J. Eng. Trib. (2008), pp. 483492Search in Google Scholar

19 T.Hanawa: Metal ion release from metal implants, Mat. Sci. Eng. C24 (2004), pp. 745752Search in Google Scholar

20 A.W.Hodgson, S.Mischler, B.V.Rechenberg, S.Virtanen: An analysis of the in vivo deterioration of CoCrMo implants through wear and corrosion, Proc. IMechE, Part H: J. Eng. Med.221 (2007), pp. 291303Search in Google Scholar

21 W.Brodner, P.Bitzan, V.Meisinger, A.Kaider, F.Gottsauner-Wolf, R.Kotz: Elevated serum cobalt with metal-on-metal articulating surfaces, J. Bone Joint Surg. 79B (1997), pp. 316321Search in Google Scholar

22 Y.Okazaki, E.Gotoh: Comparision of metal release from various metallic biomaterials in vitro, Biomaterials26 (2005), pp. 1121Search in Google Scholar

23 N.B.Muhamad, W.F.A.Abdul Majid, M.R.Abdul Kadir: Toxic element released from high and low carbon CoCrMo alloy in vitro, Proc. IECBES (2010), pp. 180183Search in Google Scholar

24 Y.Okazaki, E.Gotoh: Metal release from stainless steel, Co-Cr-Mo-Ni-Fe and Ni-Ti alloys in vascular implants, Corros. Sci.50 (2008), pp. 34293438Search in Google Scholar

25 K.Yang, Y.Ren: Nickel-free austenitic stainless steels for medical applications, Sci. Technol. Adv. Mat.11 (2010), pp. 113Search in Google Scholar

26 L.A.Joseph, O.K.Israel, E.J.Edet: Comparative evaluation of metal ions release from titanium and Ti6Al7Nb into bio-fluids, Dent. Res. J.6 (2009), pp. 711Search in Google Scholar

27 I.Cvijovic-Alagic, Z.Cvijovic, S.Mitrovic, V.Panic, M.Rakin: Wear and corrosion behaviour of Ti13Nb13Zr and Ti6Al4V alloys in simulated physiological solution, Corros. Sci.53 (2011), pp. 796808Search in Google Scholar

28 L.S.Morais, G.G.Serra, C.A.Muller, L.R.Andrade, E.F.A.Palermo, C.N.Elias, M.Meyers: Titanium alloy mini-implants for orthodontic anchorage: immediate loading and metal ion release, Acta Biomater.3 (2007), pp. 331339Search in Google Scholar

29 N.J.Hallab, J.J.Jacobs: Biologic effects of implant debris, Bull. NYU Hosp. Jt. Dis. 67(2) (2009), pp. 182188Search in Google Scholar

30 M.J.Yaszemski, D.J.Trantolo, K.U.Lewandrowski, V.Hasirci, D.E.Altobelli: Biomaterials in Orthopedics, Marcel Dekker, New York (2004)Search in Google Scholar

31 D.C.Hansen: Metal corrosion in the human body: the ultimate bio-corrosion scenario, Electrochem. Soc. Interface (2008), pp. 3134Search in Google Scholar

32 R.Singh, N.B.Dahotre: Corrosion degradation and prevention by surface modification of biometallic materials, J. Mater. Sci. Mater. Med.18 (2007), pp. 725751Search in Google Scholar

33 L.S.Morais, G.G.Serra, C.A.Muller, L.R.Andrade, E.F.A.Palermo, C.N.Elias, M.Meyers: Titanium alloy mini-implants for orthodontic anchorage: Immediate loading and metal ion release, Acta Biomater.3 (2007), pp. 331339Search in Google Scholar

34 M.Geetha, A.K.Singh, R.Asokamani, A.K.Gogia: Ti based biomaterials, the ultimate choice for orthopaedic implants – A review, Prog. Mater. Sci.54 (2009), pp. 397425Search in Google Scholar

35 A.Kurella, N.B.Dahotre: Surface Modification for Bioimplants: The Role of Laser Surface Engineering, J. Biomater. Appl.20 (2005), pp. 550Search in Google Scholar

36 G.Wang, H.Zreiqat: Functional Coatings of Films for Hard-Tissue applications, Materials3 (2010), pp. 39944050Search in Google Scholar

37 A.Bloyce, P.Y.Qi, H.Dong, T.Bell: Surface modification of titanium alloys for combined improvements in corrosion and wear resistance, Surf. Coat. Technol.107 (1998), pp. 125132Search in Google Scholar

38 X.Liu, P.K.Chu, C.Ding: Surface modification of titanium, titanium alloys and related materials for biomedical applications, Mater. Sci. Eng.R47 (2004), pp. 4921Search in Google Scholar

39 H.Guleryuz, H.Cimenoglu: Effect of thermal oxidation on corrosion and corrosion-wear behaviour of a Ti6Al4V alloy, Biomaterials25 (2004), pp. 33253333Search in Google Scholar

40 F.M.Guclu, H.Cimenoglu, E.S.Kayali: The recrystallization and thermal oxidation behaviour of CP-titanium, Mater. Sci. Eng. C 26 (2006), pp. 13671372Search in Google Scholar

Published Online: 2013-05-26
Published in Print: 2013-02-01

© 2013, Carl Hanser Verlag, München