Accessible Requires Authentication Published by De Gruyter August 22, 2013

Effects of Surface Treatment on Corrosion Resistance of 316 Stainless Steel Implants in Tyrode Solution

Auswirkungen der Oberflächenbehandlung auf den Korrosionswiderstand von Implantaten aus Stahl 316 in Tyrode-Lösung
Zeinab Ahmadian, Iman Danaee and Mohammad Ali Golozar
From the journal Materials Testing

Abstract

The effect of different surface preparation methods such as mechanical, chemical, and electrochemical surface preparation as well as ultrasonic cleaning on the formation, stability, and deterioration of surface films formed on austenitic 316 stainless steel was investigated in Tyrode's solution. The methods of cyclic polarization, AC impedance measurements and surface techniques were used. A hysteresis loop in a cyclic polarization curve was obtained that indicates a delay in re-passivation of an existing pit when the potential is scanned cathodically. Nyquist diagrams consist of two strongly overlapped capacitive semicircles which are assigned to charge transfer and passive film resistance. Electrolytic polishing improves corrosion resistance by increasing the value of the corrosion potential and breakdown potential of the passive layer as well as the pit initiation potential. After chemical passivation and acid cleaning, no perfect passivation region was observed. Change in surface fractal is in good agreement with the result obtained from height roughness factor of AFM.

Abstract

Die Auswirkung verschiedener Oberflächenvorbereitungsverfahren, wie mechanische, chemische und elektrochemische Oberflächenvorbereitung sowie Ultraschallreinigung auf die Ausbildung, die Stabilität und die Schädigung von Oberflächenfilmen, die sich auf dem hochlegierten Stahl 316 ausbilden, wurden in Tyrode-Lösung untersucht. Hierzu wurden die Verfahren der zyklischen Polarisation, der AC-Impedanzmessung und entsprechende Oberflächentechniken angewendet. Es wurde eine Hysterese-Schleife in einer zyklischen Polarisationskurve ermittelt, die eine Verzögerung in der Re-Passivierung eines existierenden Loches anzeigt, wobei das Potential kathodisch gescannt wurde. Die Nyquist-Diagramme enthalten zwei deutlich überlappende Halbkreise, die einem Ladungstransfer- und entsprechendem Passivschichtwiderstand zugeordnet wurden. Elektrolytisches Polieren verbessert den Korrosionswiderstand, indem sich der Wert des Korrosionspotentiales und des Durchbruchspotentiales der Passivschicht sowie des Lochinitiierungspotentiales erhöht. Nach chemischer Passivierung und Säurereinigung, wurde keine perfekt passivierte Region beobachtet. Die Veränderung des Oberflächenfraktals steht in guter Übereinstimmung mit den Ergebnissen aus den Höhenrauheitsfaktoren, die mittels AFM ermittelt wurden.

References

1 A.Baron, W.Simka, G.Nawrat, D.Szewieczek: Electropolishing and chemical passivation of austenitic steel, J. Achievements Mater. Manuf. Eng.31 (2008), pp. 197202 Search in Google Scholar

2 S.Ningshen, U.Kamachi Mudali, G.Amarendra, P.Gopalan, R. K.Dayal, H. S.Khatak: Hydrogen effects on the passive film formation and pitting susceptibility of nitrogen containing type 316L stainless steels, Corros. Sci.48 (2006), pp. 1106112110.1016/j.corsci.2005.05.003 Search in Google Scholar

3 T. L.Sudesh, L.Wijesinghe, D. J.Blackwood: Characterization of passive films on 300 series stainless steels, Appl. Surf. Sci.253 (2006), pp. 1006100910.1016/j.apsusc.2006.03.081 Search in Google Scholar

4 G. T.Burstein, P. C.Pistorius: Surface roughness and the metastable pitting of stainless steel in chloride solutions, Corrosion51 (1995), pp. 38038510.5006/1.3293603 Search in Google Scholar

5 G. E.Coates: Effect of some surface treatments on corrosion of stainless steel, A review, Mater. Perform. (1990), pp. 6169 Search in Google Scholar

6 J. S.Noh, N. J.Laycock, W.Gao, D. B.Wells: Effects of nitric acid passivation on the pitting resistance of 316 stainless steel, Corros. Sci.42 (2000), pp. 2069208410.1016/S0010-938X(00)00052-4 Search in Google Scholar

7 L.Wagner: Mechanical surface treatments on titanium, aluminum and magnesium alloys, Mater. Sci. Eng. A263 (1999), pp. 21021610.1016/S0921-5093(98)01168-X Search in Google Scholar

8 S. J.Lee, J. J.Lai: The effects of electropolishing (EP) process parameters on corrosion resis­tance of 316L stainless steel, J. Mater. Process. Tech.140 (2003), pp. 20621010.1016/S0924-0136(03)00785-4 Search in Google Scholar

9 C.Charles, J.Irving: Corrosion and degradation of implant materials: Second symposium. Electropolishing stainless steel implants, 1983, pp. 136146 Search in Google Scholar

10 G.Hultquist, C.Leygraf: Surface composition of a 316 stainless steel related to initiation of crevice corrosion, Corrosion36 (1980), pp. 126131 Search in Google Scholar

11 I.Danaee: Kinetics and mechanism of palladium electrodeposition on graphite electrode by impedance and noise measurements, Electroanal. Chem.662 (2011), pp. 41542010.1016/j.jelechem.2011.09.012 Search in Google Scholar

12 J. R.Macdonald: Note on the parameterization of the constant phase admittance element, Solid State Ion.13 (1984), pp. 14714910.1016/0167-2738(84)90049-3 Search in Google Scholar

13 M.Jafarian, F.Gobal, I.Danaee, R.Biabani, M. G.Mahjani: Electrochemical studies of the pitting corrosion of tin in citric acid solution containing Cl, Electrochim. Acta53 (2008), pp. 4528453610.1016/j.electacta.2008.01.051 Search in Google Scholar

14 Z.Szklarska-Smialowska, Pitting Corrosion of Metals, NACE, Houston, TX, USA (1986) Search in Google Scholar

15 E.Blasco-Tamarit, A.Igual-Muňoz, J.Garcia Antón, D.Garcia-Garcia: Effect of temperature on the corrosion resistance and pitting behaviour of alloy 31 in LiBr solutions, Corros. Sci.50 (2008), pp. 1848185710.1016/j.corsci.2008.03.016 Search in Google Scholar

16 K. R.Tarantesva, V. S.Pakhomov: Pitting resistance criteria for corrosion-resistant steels, Chem. Petrol. Eng.45 (2009), pp. 412421 Search in Google Scholar

17 K. V.Rybalka, V. S.Shaldaev, L. A.Beketaeva, A. N.Malofeeva, A. D.Davydov: Development of pitting corrosion of stainless steel 403 in sodium chloride solutions, J. Electrochem.46 (2010), pp. 196204 Search in Google Scholar

18 I.Danaee, S.Noori: Kinetics of the hydrogen evolution reaction on NiMn graphite modified electrode, Int. J. Hydrogen Energy36 (2011), pp. 121021211110.1016/j.ijhydene.2011.06.106 Search in Google Scholar

19 S.Trasatti, O. A.Petrii: Real surface area measurements in electrochemistry, Pure Appl. Chem.63 (1991), pp. 71173410.1351/pac199163050711 Search in Google Scholar

20 T.Hryniewicz, K.Rokosz, R.Rokicki: Electrochemical and XPS studies of AISI 316L stainless steel after electropolishing in a magnetic field, Corros. Sci.50 (2008), pp. 2676268110.1016/j.corsci.2008.06.048 Search in Google Scholar

21 L.Freire, M.J.Carmezim, M. G. S.Ferreira, M.F.Montemor: The passive behaviour of AISI 316 in alkaline media and the effect of pH: A combined electrochemical and analytical study, Electrochim. Acta55 (2010), pp. 6174618110.1016/j.electacta.2009.10.026 Search in Google Scholar

22 K. N.Jung, S. I.Pyun: Effect of pore structure on anomalous behaviour of the lithium intercalation into porous V2O5 film electrode using fractal geometry concept, Electrochim. Acta51 (2006), pp. 2646265510.1016/j.electacta.2005.08.008 Search in Google Scholar

23 G. A.McRae, M. A.Maguire, C. A.Jeffrey, D. A.Guzonas, C. A.Brown: A comparison of fractal dimensions determined by atomic force microscopy and impedance spectroscopy of anodic oxides on Zr–2.5Nb, Appl. Surf. Sci.191 (2002), pp. 9410510.1016/S0169-4332(02)00165-4 Search in Google Scholar

Published Online: 2013-08-22
Published in Print: 2013-04-02

© 2013, Carl Hanser Verlag, München