Accessible Unlicensed Requires Authentication Published by De Gruyter August 22, 2013

Fatigue Failure Assessment of Metallic Specimens Using the Acoustic Emission Technique

Abschätzung von Ermüdungsschäden an metallischen Proben mittels Schallemissionsanalyse
Mazian Mohammad, Shahrum Abdullah, Nordin Jamaludin, Othman Innayatullah and Zulkifli Mohd Nopiah
From the journal Materials Testing

Abstract

This paper presents a process to determine the relationship between acoustic emission (AE) signals and the strain signal pattern for estimating material fatigue life. In addition, it establishes the usefulness of AE in predicting the fatigue life of metallic components. This study was carried out to investigate the relationship between the strain and AE signals to ensure that AE can also be used as a tool to predict the fatigue life of metallic specimens. Two types of sensors, i. e., the AE piezoelectric transducer and the strain gauge, were attached to SAE 1045 steel specimens during the fatigue cyclic test when the specimens were under constant loading. Two types of signals were obtained at three different applied loads (6.0 kN, 6.4 kN and 6.8 kN). Both signal types were then analyzed using a statistical model, and the results were used to correlate the fatigue life and AE signals. The fatigue life values were calculated using strain-life models. The correlation between the experimental and predicted values of fatigue life was then established. The results showed that the correlation between the r.m.s. AE values and the calculated fatigue life ranged from 74.0 % to 98.5 %, while the correlation between the kurtosis AE values and the predicted values was found to be between 95.0 % and 99.9 %. These correlation values showed that the AE technique can be used to predict the fatigue life of metallic specimens.

Abstract

Im vorliegenden Beitrag wird eine Methode zur Bestimmung der Zusammenhänge zwischen Schallemissionssignalen und Dehnungsignalen zur Abschätzung der Lebensdauer bei Ermüdungsbeanspruchung vorgestellt. Außerdem wird die Nützlichkeit der Schallemissionsanalyse zur Vorhersage der Ermüdungsfestigkeit und der Lebensdauer von metallischen Komponenten gezeigt. Die diesem Beitrag zugrunde liegende Studie wurde durchgeführt, um das Verhältnis zwischen der Dehnung und den Schallemissionssignalen zu untersuchen, um sicherzustellen, dass die Schallemissionsanalyse auch als Werkzeug zur Vorhersage der Lebensdauer von metallischen Komponenten verwendet werden kann. Dabei wurden während des Ermüdungsversuches zwei Sensortypen, zum einen der piezoelektrische Schallemissionstransducer und zum anderen der Dehnungsmessstreifen an einer Probe des Stahles SAE 1045 angebracht, wobei die Proben konstant beansprucht wurden. Es wurden zwei Signalarten bei drei verschiedenen Beanspruchungen (6,0 kN, 6,4 kN und 6,8 kN) aufgezeichnet. Beide Signaltypen wurden danach mittels eines statistischen Modells analy­siert und die Ergebnisse wurden zur Korrelation der Lebensdauer mit den Schallemissionsdaten verwendet. Die Lebensdauerwerte wurden mittels dehnungsbasierter Modelle berechnet. Danach wurde eine Korrelation zwischen den experimentellen und den berechneten Werten erstellt. Die Ergebnisse zeigten, dass die Übereinstimmung der r.m.s. Schallemissionswerte mit der berechneten Lebensdauer zwischen 74,0 % und 98,5 % schwankte, während die Übereinstimmung der Kurtosis der Schallemissionsanalyse mit den Berechnungswerten zwischen 95,0 % und 99,9 % lag. Diese Korrelationswerte zeigten, dass die Schallemissions­analyse zur Vorhersage der Lebensdauer von metallischen Proben verwendet werden kann.

References

1 N.E.Dowling: Mechanical Behaviour of Materials: Engineering methods for deformation, fracture and fatigue in Fatigue of Materials: Introduction and Stress-Based Approach: 3rd Edition, chapter 9, Prentice Hall, USA (2007)Search in Google Scholar

2 P.Mazal, L.Pazdera, J.Smutny: Application of advanced AE signal treatment in the area of mechanical cyclic loading, European Working Group on Acoustic Emission Conference (2004), pp. 283292Search in Google Scholar

3 M.Skorupa, A.Skorupa: Experimental results and predictions on fatigue crack growth in structural steel, International Journal of Fatigue27 (2005), pp. 1016102810.1016/j.ijfatigue.2004.11.011Search in Google Scholar

4 R.Peace, H.Cunha Furtado, I.Le May: Remaining life assessment of welded pipes containing cracks, International Journal of Pressure Vessels and Piping83 (2006), pp. 79880210.1016/j.ijpvp.2006.08.005Search in Google Scholar

5 S.Abdullah, A.Kamal Ariffin, C.Ku Eddy Nizwan, M.Faizal Abdullah, A.Jalar, M.Faridz Mod Yunoh: Failure Analysis of a semiconductor packaging leadframe using the signal processing approach, International Journal of Modern Physics B24 (2010), No. 1–2, pp. 17518210.1142/S0217979210064101Search in Google Scholar

6 S.Maiti, P. H.Geubelle: A cohesive model for fatigue failure of polymers, Engineering Fracture Mechanics72 (2005), pp. 69170810.1016/j.engfracmech.2004.06.005Search in Google Scholar

7 A.Berkovits, D.Fang: Study of fatigue crack characteristics by acoustic emission, Engineering Fracture Mechanics51 (1995), pp. 40141610.1016/0013-7944(94)00274-LSearch in Google Scholar

8 N.Jamaludin, D.Mba, R. H.Bannister: Condition monitoring of slow-speed rolling element bearings using stress waves, J. Process Mech. Eng.215 (2001), No. 4, pp. 24527110.1243/0954408011530488Search in Google Scholar

9 D.Mba, B. K. N.Rao Raj: Development of acoustic emission technology for condition monitoring and diagnosis of rotating machines: bearings, pumps, gearboxes, engines and rotating structures, Shock Vib Dig (38) (2006), pp. 316Search in Google Scholar

10 C.Ennaceur, A.Laksimi, C.Herve, M.Cherfaoui: Monitoring crack growth in pressure vessel steels by the acoustic emission technique and the method of potential difference, International Journal of Pressure Vessels and Piping83 (2006), pp. 19720410.1016/j.ijpvp.2005.12.004Search in Google Scholar

11 O.Y.Andreykiv, M.K.V.Lysak, O.M.Serhiyenko, V.R.Skalsky: Analysis of acoustic emission caused by internal cracks, Engineering Fracture Mechanics Journal68 (2001), pp. 1317133310.1016/S0013-7944(01)00026-1Search in Google Scholar

12 M.Elforjani, D.Mba: Detecting natural crack initiation and growth in slow speed shafts with the acoustic emission technology, Engineering Failure Analysis16 (2009), pp. 2121212910.1016/j.engfailanal.2009.02.005Search in Google Scholar

13 M.Loman, S.Abdullah, N.Jamaluddin: Fatigue analysis of piping system using acoustic emission technique, Proc. of the International Conference on Science & Technology: Applications in Industry & Education (2008), Penang, Malaysia, pp. 679683Search in Google Scholar

14 Z.Rahman, H.Ohba, T.Yoshioka, T.Yamamoto: Incipient damage detection and its propagation monitoring of rolling contact fatigue by acoustic emission, Tribology International42 (2009), pp. 80181510.1016/j.triboint.2008.10.014Search in Google Scholar

15 C.R.Rios, S.L.Ogin, C.Lekakou, K.H.Leong: Acoustic Emission technique for detecting damage and mechanisms of fracture in a knitted fabric reinforced composite, Journal of Acoustic Emission23 (2005), pp. 2536Search in Google Scholar

16 W.Prosser, E.Madaras, G.Studor, M.Gorman: Acoustic emission detection of impact damage on space shuttle structures, Journal of Acoustic Emission23 (2005), pp. 3746Search in Google Scholar

17 T.Yanase, S.Ikegaya: Damage detection system for structures with smart AE sensors, Journal of Acoustic Emission23 (2005), pp. 96101Search in Google Scholar

18 A.Yonezu, T.Hirakawa, T.Ogawa, M.Takemoto: Fatigue damage progression in plastic during cyclic ball indentation, Journal of Acoustic Emission23 (2005), pp. 156163Search in Google Scholar

19 T. M.Roberts, M.Talebzadeh: Fatigue life prediction based on crack propagation and acoustic emission counts rates, Journal of Constructional steel Research59 (2003), pp. 67969410.1016/S0143-974X(02)00065-2Search in Google Scholar

20 M.Loman: A Study of Fatigue Crack Initiation using Acoustic Emission Technique, Thesis of Master Degree, Department of Mechanical and Materials, Universiti Kebangsaan Malaysia (2010)Search in Google Scholar

21 S.Abdullah, M.Loman, N.Jamaluddin: Signal Processing Method for evaluating fatigue damage in a piping system, Journal of Applied Sciences9 (2009), pp. 2381238910.3923/jas.2009.2381.2389Search in Google Scholar

22 M.Bayray, F.Rauscher: Wavelet transform analysis of experimental AE waveforms on steel pressure, Journal of Acoustic Emission24 (2006), pp. 2243Search in Google Scholar

23 M.Mohammad: A study of acoustic emission signatures for a flow through smooth and rough surface pipes and check valve, Thesis of Master Degree, Department of Mechanical and Materials, Universiti Kebangsaan, Malaysia (2007)Search in Google Scholar

24 M.Fauziah, J.Nordin, I.Othman, M.Mazian, M.Bibi Suraya: Application of Acoustic Emission Technique in Monitoring Lubrication Condition of Low Speed Bearing, Proc. of the International Conference on Mechanical & Manufacturing Engineering (ICME2008), Johor Bahru, Malaysia (2008), pp. 2027Search in Google Scholar

25 S.Abdullah, J. C.Choi, J. A.Giacomin, J. R.Yates: Bump extraction algorithm for variable amplitude fatigue loading, International Journal of Fatigue28 (2006), pp. 67569110.1016/j.ijfatigue.2005.09.003Search in Google Scholar

26 K. A.Zakaria, S.Abdullah, M. J.Ghazali, M. B.Ali: Effect of fatigue strain signals on fatigue damages of the engine mount brackets, Proc. of the Regional Engineering Postgraduate Conference (EPC) (2010), Selangor, Malaysia, pp. 687693Search in Google Scholar

27 J.Draper: Modern Metal Fatigue Analysis, Emas Publishing, UK (2007)Search in Google Scholar

28 N.Jamaluddin: Machine Condition Monitoring (KJ 6363) notes (2007)Search in Google Scholar

29 A. J.Brunner, M. T.Howald, P.Niemz: Acoustic emission rate behaviour of laminated woods under tensile loading, Journal of Acoustic Emission24 (2006), pp. 2243 and 98–104Search in Google Scholar

30 J.-H.Lee, M.-R.Lee, J.-T.Kim, V.Luk, Y.-H.Jung: A study of the characteristics of the acoustic emission signals for condition monitoring of check valves in nuclear power plants, Nuclear Engineering and Design236 (2006), pp. 1411142110.1016/j.nucengdes.2006.01.007Search in Google Scholar

31 N.Ismail, M. Z.Nuawi, S.Abdullah, A.Arifin: Statistical analysis of vibration signal on an automotive suspension system, Proc. of the Regional Conference on Noise, Vibration and Comfort (NVC) 2010 Putrajaya, Malaysia (2010), pp. 464472Search in Google Scholar

32 Z. M.Nopiah, M. I.Khairir, S.Abdullah, C. K. E.Nizwan, M. N.Baharin: Peak-Valley Segmentation Algorithm for Kurtosis Analysis and Classification of Fatigue Time Series Data, European Journal of Scientific Research29 (2009), pp. 113125Search in Google Scholar

33 K. H.Zou, K.Tuncali, S. G.Silverman: Correlation and Simple Linear Regression, Radiology227 (2003), pp. 61762810.1148/radiol.2273011499Search in Google Scholar

34 A.Lennie, S.Abdullah, Z. M.Nopiah, M. N.Baharin: Behavioural investigation of fatigue time series using the statistical approach, Journal of Applied Sciences16 (2010), pp. 17141722Search in Google Scholar

35 S.Abdullah, N.Ismail, M. Z.Nuawi, M. Z.Nopiah: Using the hybrid kurtosis-based method to correlate strain and vibration signals, WSEAS Transactions on Signal Processing6 (2006), pp. 7990Search in Google Scholar

36 S. J.Bailey, N. C.Baldini, S.Emery: Standard Test Methods for Tension Testing of Metallic Materials, Annual Book of ASTM Standard 03.01 (2010)Search in Google Scholar

37 J. A.Berríos, M. H.Staia, E. C.Hernández, H.Hintermann, E. S.Puchi: Effect of The Thickness of an Electroless Ni–P Deposit on the Mechanical Properties of an AISI 1045 Plain Carbon Steel, Surface and Coatings Technology108–109 (1998), pp. 46647210.1016/S0257-8972(98)00601-XSearch in Google Scholar

38 S. J.Bailey, N. C.Baldini, S.Emery: Metals Test Methods and Analytical Procedures, Annual Book of ASTM Standard 03.01 (2010)Search in Google Scholar

39 K. A.Sweitzer, N. S.Ferguson: Mean Stress Effects on random fatigue of nonlinear structures, Proc. of the 12th International Congress on Sound and Vibration (2005), Lisbon, Portugal, pp. 714, Twelfth International Congress on Sound and VibrationSearch in Google Scholar

40 K.Yamaguchi, T.Abe, K.Kobayashi, E.Takeuchi, H.Hirukawa, Y.Maeda, N.Nagashima, M.Hayakawa, Y.Furuya, M.Shimodaira, K.Miyahara: Gigacycle fatigue data sheets for advanced engineering materials, Journal of Science and Technology of Advanced Materials (2007), pp. 54555110.1016/j.stam.2007.09.009Search in Google Scholar

41 J.Van Baren, P.Van Baren: The fatigue damage spectrum and kurtosis control, Vibration Research Corporation Jenison, MI, USA (2009)Search in Google Scholar

Published Online: 2013-08-22
Published in Print: 2013-04-02

© 2013, Carl Hanser Verlag, München