Abstract
The influences of hole dimension and position on the lateral buckling behaviour of woven fabric laminated composite cantilever beams having a square hole were investigated. Firstly, the theoretical, experimental and numerical characteristics of critical buckling loads of the beams without holes were investigated and compared with each other. It was shown that there is a good agreement among the theoretical, experimental and numerical results. The ANSYS finite element program was used for the numerical analyses. Furthermore, the numerical analyses of some models with various hole dimensions, different layer thicknesses, square shapes and fiber directions were performed by changing the distance between the hole. It is concluded for a square hole that the increase of the hole dimensions causes decrease of critical lateral buckling loads.
Kurzfassung
Die Einflüsse der Lochdimensionen und ihrer Position auf das laterale Beulverhalten von gewebelaminierten Kompositauslegern mit quadratischen Löchern wurden in der diesem Beitrag zugrunde liegenden Studie untersucht. Hierzu wurden zuerst die theoretischen, experimentellen und numerischen Untersuchungen der kritischen Beulbeanspruchungen der Träger ohne Löcher ermittelt und miteinander verglichen. Es zeigte sich, dass eine gute Übereinstimmung zwischen theoretischen, numerischen und experimentellen Ergebnissen bestand. Für die numerischen Analysen wurde das Finite Elemente Programm ANSYS eingesetzt. Außerdem wurden die numerischen Analysen von einigen Modellen mit verschiedenen Lochdimensionen, Lagendicken, quadratischen Formen und Faserausrichtungen ausgeführt, indem der Abstand zwischen den Löchern variiert wurde. Es stellte sich für das quadratische Loch heraus, dass eine Vergrößerung der Lochdimensionen die kritischen lateralen Beulbeanspruchungen herabsetzen.
References
1 A.Sapkas, L. P.Kollar: Lateral torsional buckling of composite beams, Int. J. Solids Struct.39 (2002), pp. 2939–296310.1016/S0020-7683(02)00236-6Search in Google Scholar
2 F.Bleich: Buckling Strength of Metal Structures, New York: McGraw-Hill (1952)Search in Google Scholar
3 A.Chajes: Principle of Structural Stability Theory, Englewood Cliffs (NJ): Prentice-Hall (1952)Search in Google Scholar
4 S. P.Timoshenko, J. M.Gere: Theory of Elastic Stability, 2nd Edition, McGraw-Hill, New York, USA (1961) 10.1115/1.3636481Search in Google Scholar
5 C. M.Wang, C. Y.Wang, J. N.Reddy: Exact Solutions for Buckling of Structural Members, CRC Press, Boca Raton, FL, USA (2004) 10.1201/9780203483534Search in Google Scholar
6 J.Lee, S. E.Kim, K.Hong: Lateral buckling of I-section composite beams, Eng. Struct.24 (2002), pp. 955–96410.1016/S0141-0296(02)00016-0Search in Google Scholar
7 V. Z.Vlasov: Thin-walled Elastic Beams, 2nd Edition, Israel Program for Scientific Translation, Jerusalem, Israel (1961)Search in Google Scholar
8 N. R.Bauld, L.Tzeng: A Vlasov theory for fiber-reinforced beams with thin-walled open cross sections, Int. J. Solids Struct.20 (1984), No. 3, pp. 277–29710.1016/0020-7683(84)90039-8Search in Google Scholar
9 R. J.Brooks, G. J.Turvey: Lateral buckling of pultruded GRP I-section cantilever, Compos. Struct.32 (1995), pp. 203–21510.1016/0263-8223(95)00018-6Search in Google Scholar
10 G. J.Turvey: Effects of load position on the lateral buckling response of pultruded GRP cantilevers comparisons between theory and experiment, Compos. Struct.35 (1996), pp. 33–4710.1016/0263-8223(96)00022-0Search in Google Scholar
11 M. Z.Kabir, A. N.Sherbourne: Optimal fibre orientation in lateral stability of laminated channel section beams, Compos. Part B-Eng29 (1998), No. 1, pp. 81–8710.1016/S1359-8368(97)00022-XSearch in Google Scholar
12 J.Lee: Center of gravity and shear center of thin-walled opensection composite beams, Compos. Struct.52 (2001), No. 2, pp. 255–26010.1016/s0263-8223(00)00177-xSearch in Google Scholar
13 N. S.Trahair: Flexural-Torsional Buckling of Structures, CRC Press, Boca Raton, FL, USA (1993)10.1201/9781482271218Search in Google Scholar
14 F.Mohri, L.Azrar, M.Potier-Ferry: Lateral post-buckling analysis of thin-walled open sections beams, Thin Wall Struct40 (2002), pp. 1013–103610.1016/S0263-8231(02)00043-5Search in Google Scholar
15 S. P.Machado, V. H.Cortinez: Lateral buckling of thin-walled composite bisymmetric beams with prebuckling and shear deformation, Eng. Struct.27 (2005), pp. 1185–119610.1016/j.engstruct.2005.02.018Search in Google Scholar
16 D. P.Hindman, H. B.Manbeck, J. J.Janowiak: Measuremennt and prediction of lateral torsional buckling loads of composite wood materials: Rectangular sections, Forest Prod. J.55 (2005), No. 9, pp. 42–47Search in Google Scholar
17 G. J.Turvey: Lateral buckling tests on rectangular cross section pultruded GRP cantilever beams, Compos. Part B-Eng27 (1996), No. 1, pp. 35–4210.1016/1359-8368(95)00004-6Search in Google Scholar
18 D. H.Hodges, D. A.Peters: Lateral torsional buckling of cantilevered elastically coupled composite strip- and I-beams, Int. J. Solids Struct.38 (2001), pp. 1585–160310.1016/S0020-7683(00)00111-6Search in Google Scholar
19 L.Haengsoo, J.Dong-Won, J.Jin-Ho, I.Seyoung: Finite element analysis of lateral buckling for beam structures, Comput. Struct.53 (1994), No. 6, pp. 1357–137110.1016/0045-7949(94)90400-6Search in Google Scholar
20 S. E.Svensson: Lateral buckling of beams analyzed as elastically supported columns subject to a varying axial force, J. Constr. Steel Res.5 (1985), pp. 179–19310.1016/0143-974X(85)90002-1Search in Google Scholar
21 V.Thevendran, N. E.Shanmugam: Lateral buckling of narrow rectangular beams containing openings, Comput. Struct.43 (2) (1992), pp. 247–25410.1016/0045-7949(92)90141-LSearch in Google Scholar
22 R. D. S. G.Campilho, M. F. S. F.de Moura, D. A.Ramantani, J. J. L.Morais, J. J. M. S.Domingues: Buckling strength of adhesively bonded single and double-strap repairs on carbon-epoxy structures, Composites Science and Tech.70 (2010), pp. 371–37910.1016/j.compscitech.2009.11.010Search in Google Scholar
23 R. M.Lawson, J.Lim, S. J.Hicks, W. I.Simms: Design of composite asymmetric cellular beams and beams with large web openings, J. Constr. Steel Res.62 (2006), pp. 614–62910.1016/j.jcsr.2005.09.012Search in Google Scholar
24 C.Karaağaç, H.Öztürk, M.Sabuncu: Lateral dynamic stability analysis of a cantilever laminated composite beam with an elastic support, Int. J. Struct. Stability and Dynamics7 (2007), No. 3, pp. 377–40210.1142/S0219455407002320Search in Google Scholar
25 N. E.Shanmugam, V.Thevendran: Critical loads of thin-walled beams containing web openings, Thin Wall Struct.14 (1992), No. 4, pp. 291–30510.1016/0263-8231(92)90037-WSearch in Google Scholar
26 Y.Arman, M.Zor, S.Aksoy: Determination of critical delamination diameter of laminated composite plates under buckling load, Compos. Sci. Tech.66 (15) (2006), pp. 2945–295310.1016/j.compscitech.2006.02.014Search in Google Scholar
27 E.Eryigit, M.Zor, Y.Arman: Hole effects on lateral buckling of laminated cantilever beams, Composites: Part B40 (2009), pp. 174–17910.1016/j.compositesb.2008.07.005Search in Google Scholar
© 2014, Carl Hanser Verlag, München