Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 1, 2014

Effect of Molybdenum on Wear Resistance of Cr-Nb Hard-Faced S355JR Steel

Die Wirkung von Molybdän auf den Verschleißwiderstand eines Cr-Nb gepanzerten S355JR Stahls
  • Nut Thongchitrugsa , Amnuaysak Chianpairot , Fritz Hartung and Gobboon Lothongkum
From the journal Materials Testing


The effect of Mo on the abrasive wear resistance of (20–23)Cr-(7–8)Nb hard-faced S355JR steel by shielded metal arc welding (SMAW) was studied. Four types of flux, consisting of fixed Cr and Nb but varying Mo contents, coated on hard-facing electrode were used. Microstructure, micro hardness, and abrasive wear resistance of the hard-faced surface were investigated by ASTM G65 D procedure. The original microstructures consist of the primary coarse and eutectic carbides. Mo affects morphology of carbides by decreasing primary carbide size. When Mo content in the hard-faced surface was up to 6.43 wt.-%, the highest abrasive wear resistance and micro hardness were obtained. The decrease of primary carbide size is attributed to the increased nucleation induced by Mo addition. Network structure was observed when the Mo content reaches 10.19 wt.-%. The main mechanisms of wear are micro-cutting and carbide pulling out.


Die Wirkung eines durch Schutzgasschweißen mit (20–23)Cr-(7–8)Nb gepanzerten S355JR Stahls gegen abrasiven Verschleiß wurde in der diesem Beitrag zugrunde liegenden Studie untersucht. Es wurden vier Typen von Fließmitteln, die einen festen Cr- und Nb- aber variablen Mo-Gehalt aufwiesen, für die Panzerungselektroden untersucht. Es wurden das Gefüge, die Mikrohärte und der Widerstand der gepanzerten Oberfläche nach dem Standard ASTM G65 D untersucht. Das Originalgefüge besteht aus den primären, groben und den entektischen Carbiden. Molybdän beeinflusst die Morphologie der Carbide, indem die Größe der Primärcarbide verringert wird. Wenn der Molybdänanteil in der gepanzerten Oberfläche bis zu 6,43 wt.-% beträgt, erhält man den höchsten Verschleißwiderstand und die höchste Mikrohärte. Die Abnahme der Primärcarbidgröße ist begleitet von einer erhöhten Keimbildung, die durch Mo-Zusatz ausgelöst wird. Es wurde eine Netzstruktur beobachtet, wenn der Molybdänanteil 10,19 wt.-% erreicht. Die Hauptverschleißmechanismen bestehen in der Mikrozerspanung und dem Herausziehen der Carbide.

* Correspondence Address, Gobboon Lothongkum, Assoc. Prof. Dr.-Ing., Dept. of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Patumwan Bangkok 10330, Thailand, E-Mail:

Nut Thongchitrugsa was born in 1988. He is graduate student at the Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Thailand. He received a bachelor degree in Mechanical Engineering from King Mongkut's University of Technology Thonburi, Thailand in 2010. His research scope is related to development of hard-facing electrode for industrial application.

Amnuaysak Chianpairot, PhD, is researcher at Failure Analysis and Materials Corrosion Lab, Materials Reliability Research Unit, National Metal and Materials Technology Center. He received master degree in Metallurgical Engineering from University of California, Berkeley, USA and received PhD (Metallurgical Engineering) from the Chulalongkorn University, Thailand. His research interest is corrosion and failure analysis.

Fritz Hartung, Dr.-Ing, is a visiting professor at Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Thailand. He received master degrees and Dr.-Ing in Mechanical Engineering from University of Technology Magdeburg (Germany) in 1969 and 1975, respectively. He was head of Faculty of Technology Mechanical Engineering, Trier University of Applied Science, Germany. His areas of expertise are welding and metal joining.

Gobboon Lothongkum, a corresponding author, is associate professor and a member of the Innovative Metals Research Unit, Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Thailand. He received Dr.-Ing. degree from University of the Federal Armed Force Hamburg, Germany in 1994 and the International Welding Engineer Certificate of the International Institute of Welding in 2006. His areas of expertise include corrosion of metals and alloys, welding and metal joining, stainless steels and high temperature materials.


1 E.Hugot, G. H.Jenkins: Handbook of Cane Sugar Engineering, 3rd Edition, Elsevier Science, Amsterdam (1986)Search in Google Scholar

2 Zika Welding Electrode: Welding Catalog, Haifa (2011)Search in Google Scholar

3 M.Kirchgaßner, E.Badisch, F.Franek: Behaviour of iron-based hard-facing alloys under abrasion and impact, Wear265 (2008), pp. 77277910.1016/j.wear.2008.01.004Search in Google Scholar

4 S.Thongchitrugsa: Shredder Report 12/31/2010, Norton Interweld, Bangkok, Thailand (2010)Search in Google Scholar

5 Q. Y.Hou: Influence of molybdenum on the microstructure and properties of a FeCrBSi alloy coating deposited by plasma transferred arc hard-facing, Surf. and Coat. Technol.225 (2013), pp. 112010.1016/j.surfcoat.2013.02.043Search in Google Scholar

6 G. W.Stackhowiak, A. W.Batchelor: Engineering Tribology, 3rd Edition, Elsevier, Massachusetts, USA (2005) 10.1016/0301-679X(94)90034-5Search in Google Scholar

7 A. R.Mattar, S. C.Heck, A. L.Neto, F. A. P.Fernandes, G. E.Totten, L. C.Casteletti: Influence of alloying elements Cu, Ni and Mo on mechanical properties and austemperability of austempered ductile iron, Int. Heat Treat. and Surf. Eng.5 (2011), pp. 788210.1179/174951411X12956208225429Search in Google Scholar

8 W.Li, S. F.Shan, Q. H.Fang: Improvement of Ti-3Al-2V alloys by Mo-reinforced alloying layer, Surf. Eng.28 (2012), pp. 59459710.1179/1743294412Y.0000000036Search in Google Scholar

9 R. J.Chung, X.Tang, D. Y.Li, B.Hinckley, K.Dolman: Microstructure refinement of hypereutectic high Cr cast irons using hard carbide-forming elements for improved wear resistance, Wear301 (2013), pp. 69570610.1016/j.wear.2013.01.079Search in Google Scholar

10 X. H.Wang, F.Han, X. M.Liu, S. Y.Qu, Z. D.Zou: Effect of molybdenum on the microstructure and wear resistance of Fe-based hard-facing coatings, Mater. Sci. and Eng.A489 (2008), pp. 19320010.1016/j.msea.2007.12.020Search in Google Scholar

11 M. F.Buchely, J. C.Gutierrez, L. M.Le'on, A.Toro: The effect of microstructure on abrasive wear of hard-facing alloys, Wear259 (2005), pp. 526110.1016/j.wear.2005.03.002Search in Google Scholar

12 C.Scandian, C.Boher, J. D. Mello, F.Rza-Aria: Effect of molybdenum and chromium contents in sliding wear of high-chromium white cast iron: The relationship between microstructure and wear, Wear267 (2009), pp. 40140810.1016/j.wear.2008.12.095Search in Google Scholar

13 J. W.Park, H. C.Lee, S.Lee: Composition, microstructure, hardness, and wear properties of high-speed steel rolls, Metall. and Mater. Trans. A30A (1999), pp. 39940910.1007/s11661-999-0329-9Search in Google Scholar

14 K. C.Hwang, S.Lee, H. C.Lee: Effects of alloying elements on microstructure and fracture properties of cast high-speed steel rolls Part I: microstructural analysis, Mater. Sci. and Eng.A254 (1998), pp. 28229510.1016/S0921-5093(98)00626-1.Search in Google Scholar

15 C. K.Kim, J. I.Park, S.Lee, Y. C.Kim, N. J.Kim, J. S.Yang: Effect of alloying elements on microstructure, hardness, and fracture toughness of centrifugally cast high-speed steel rolls, Metall. Mater. Trans.A36 (2005), pp. 879710.1007/s11661-005-0141-0Search in Google Scholar

16 M.Ikeda, T.Umeda, C. P.Tong, T.Suzuki, N.Niwa, O.Kato: Effect of molybdenum addition on solidification structure, mechanical properties and wear resistivity of high chromium cast iron, ISIJ Inter.32 (1992), pp. 1157116210.2355/isijinternational.32.1157Search in Google Scholar

17 M. X.Yao, J. B. C.Wu, Y.Xie: Wear, corrosion and cracking resistance of some W- or Mo-containing Stellite hard-facing alloys, Mater. Sci. and Eng.A407 (2005), pp. 23424410.1016/j.msea.2005.06.062Search in Google Scholar

18 J.Huang, P. Z.Zhang, H. Y.Wu, W. J.Bao: Investigation of W-Mo alloyed layer synthesized by double glow plasma surface metallurgy, Surf. Eng.27 (2011), pp. 11311710.1179/026708410X12506870724433Search in Google Scholar

19 X. T.Chang, S. B.Sun: Effect of Mo on phase composition, microstructure and tribological property of TiC-reinforced plasma sprayed coatings, Surf. Eng.27 (2011), pp. 30030510.1179/1743294410Y.0000000005Search in Google Scholar

20 ASTM: Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count, E562, ASTM, Pennsylvania, USA (2011) 10.1520/E0562-11Search in Google Scholar

21 ASTM: Standard Test Method for Measuring Abrasion Using the Dry Sand/Rubber Wheel Apparatus, G65, ASTM, Pennsylvania, USA (2010) 10.1520/G0065-04R10Search in Google Scholar

22 C.Chang, L.Chen, C.Lin, J.Chen, C.Fan, W.Wu: Microstructure and wear characteristics of hypereutectic Fe-Cr-C cladding with various carbon contents, Surf. and Coat. Technol.205 (2010), pp. 24525010.1016/j.surfcoat.2010.06.021Search in Google Scholar

23 I.Barin: Thermochemical Data of Pure Substances, 3rd Edition, VCH, Weinheim, Germany (1993) 10.1002/9783527619825Search in Google Scholar

24 C.Chang, Y.ChunChen, W.Wu: Microstructural and abrasive characteristics of high carbon Fe-Cr-C hard-facing alloy, Tribo. Inter.43 (2010), pp. 92993410.1016/j.triboint.2009.12.045Search in Google Scholar

25 V. E.Buchanan: Solidification and microstructural characterization of iron-chromium based hard-faced coatings deposited by SMAW and electric arc spraying, Surf. and Coat. Technol.203 (2009), pp. 3638364610.1016/j.surfcoat.2009.05.051Search in Google Scholar

26 Y. F.Zhou, Y. L.Yang, J.Yang, P. F.Zhang, X. W.Qi, X. J.Ren, Q. X.Yang: Wear resistance of hypereutectic Fe-Cr-C hard-facing coatings with in-situ formed TiC, Surf. Eng.29 (2013), pp. 36637210.1179/1743294413Y.0000000120Search in Google Scholar

27 X.Qi, Z.Jia, Q.Yang, Y.Yang: Effects of vanadium additive on structure property and tribological performance of high chromium cast iron hard-facing metal, Surf. and Coat. Technol.205 (2011), pp. 5510551410.1016/j.surfcoat.2011.06.027Search in Google Scholar

28 A.Amirsadeghi, M. H.Sohi: Comparison of the influence of molybdenum and chromium TIG surface alloying on the microstructure, hardness and wear resistance of ADI, J. of Mater. Process. Technol.201 (2008), pp. 67367710.1016/j.jmatprotec.2007.11.157Search in Google Scholar

29 H. X.Chen, Z. C.Chang: Effect of niobium on wear resistance of 15% Cr white cast iron, Wear166 (1993), pp. 19720110.1016/0043-1648(93)90262-KSearch in Google Scholar

30 J. J.Coronado: Effect of (Fe, Cr)7C3 carbide orientation on abrasion wear resistance and fracture toughness, Wear270 (2011), pp. 28729310.1016/j.wear.2010.10.070Search in Google Scholar

31 C. W.Kuo, C.Fan, S. H.Wu, W.Wu: Microstructure and wear characteristics of hypoeutectic, eutectic and hypereutectic (Cr, Fe)23C6 carbides in hard-facing alloys, Mater. Trans.48 (2007), pp. 2324232810.2320/matertrans.MB200716Search in Google Scholar

32 O. N.Dogan, J. A.Hawk: Effect of carbide orientation on abrasion of high Cr white cast iron, Wear189 (1995), pp. 13614210.1016/0043-1648(95)06682-9Search in Google Scholar

33 Y. P.Wang, D. Y.Li, L.Parent, H.Tian: Improving the wear resistance of white cast iron using a new concept – high-entropy microstructure, Wear271 (2011), pp. 1623162810.1016/j.wear.2010.12.029Search in Google Scholar

34 D. A.Porter, K. E.Easterling, M. Y.Sherif: Phase Transformations in Metals and Alloys, 3rd Edition, CRC Press, Florida, USA (2009) 10.1007/978-1-4899-3051-4Search in Google Scholar

35 C.Qiu: Thermodynamic analysis and calculation of the Cr-Mo-C system, J. of Alloy. and Compd.199 (1993), pp. 535910.1016/0925-8388(93)90426-NSearch in Google Scholar

36 L. Y.Sheng, J. T.Guo: Microstructure and mechanical properties of NiAl–Cr(Mo)/Nb eutectic alloy prepared by injection-casting, Mater. and Des.60 (2009), pp. 96496910.1016/j.matdes.2008.06.061Search in Google Scholar

Published Online: 2014-10-01
Published in Print: 2014-03-03

© 2014, Carl Hanser Verlag, München

Downloaded on 7.12.2023 from
Scroll to top button