Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 1, 2014

Mechanical Properties of Hot Forged ANSI 1050 Steel

Mechanische Eigenschaften eines warmumgeformten ANSI 1050 Stahls
  • Uğur Çavdar
From the journal Materials Testing

Abstract

In this study, two different heating methods have been used for the hot forging process of ANSI 1050 steel. Some specimens were heated by induction generator at 250 kW, 3.2 kHz up to a temperature of 1250 °C ± 5 °C in 5 minutes under ambient conditions via a continuous conveyor belt system. Other steel specimens were heated continuously in a conventional furnace up to a temperature of 1230 °C ± 40 °C at ambient conditions in 30 minutes. All specimens were subjected to Charpy, three-point bending, fracture strain, and hardness tests (surface and cross-section measurements). Almost all mechanical test results were better for the specimens heated by the induction generator and also appeared as more stable than those for the specimens heated by conventional furnace which varying some showed results. Grain growing was found in the microstructure of the conventional heated specimens. Induction heated specimens were heated more homogenously than the conventional heated specimens which is the reason for more stable results.

Kurzfassung

In der diesem Beitrag zugrunde liegenden Studie wurden zwei verschiedene Verfahren eingesetzt, um Stahl ANSI 1050 warmumzuformen. Die Proben wurden mittels Induktionsgenerator und mittels eines konventionellen Ofens erwärmt. Einige Stahlproben wurden mit dem Induktionsgenerator bei 250 kW und 3,2 kHz auf eine Temperatur von 1250 °C ± 5 °C in 5 Minuten unter Umgebungsbedingungen mittels eines kontinuierlichen Gurtzufuhrsystems erwärmt. Andere Stahlproben wurden in einem konventionellen Ofen kontinuierlich auf eine Temperatur von 1230 °C ± 40 °C unter Umgebungsbedingungen in 30 Minuten erhitzt. An allen Proben wurden Charpy-, Drei-Punkt-Biege, Bruchdehnungs- und Härtetests (Oberflächen- und Querschnittsmessungen) durchgeführt. Für den warmumgeformten Stahl, der mit dem Induktionsgenerator erwärmt wurde, wurden bessere mechanische Eigenschaften gemessen. Die Ergebnisse für die induktionserwärmten Proben erwiesen sich als verlässlicher, während die konventionell erwärmten Proben sehr unterschiedliche Resultate zeigten. Die induktionserwärmten Proben wurden homogener erwärmt als die konventionell erhitzten, was zu den verlässlicheren Ergebnissen führte.


* Correspondence Address, Asst. Prof. Dr. Uğur Çavdar, Celal Bayar University, Vocational School, Department of Machinery, Turgutlu Campus, 45400 Manisa, Turkey, E-Mail:

Dr. Uğur Çavdar, born 1981, studied Mechanical Engineering, and is assistant professor at Celal Bayar University, Turkey. His studies include powder metallurgy, iron based powders, induction sintering, novel and new sintering methods, induction systems, hot forging, heat treatments, welding, induction welding, Alumina GNP and nano technology.


References

1 S.Rajender: Introduction to basic manufacturing processes and workshop technology, New Age International, Daryaganj, Delhi, (2006), pp. 260265, 268Search in Google Scholar

2 H.Boyer: Metal handbook, 8th Edition, ASM Handbook Committee, Ohio, USA (1971)Search in Google Scholar

3 A.Özgen: Cutting strategies for forging die manufacturing on CNC milling machines, The Graduate School of Natural and Applied Sciences of METU, MS thesis in Mechanical engineering (2008), pp. 3539Search in Google Scholar

4 İ.Durukan: Effects of induction heating parameters on forging billet temperature, The Graduate School of Natural and Applied Sciences of METU, MS thesis in Mechanical Engineering (2007), pp. 2335Search in Google Scholar

5 V.Rudnev, D.Loveless, R.Cook, M.Black: Handbook of induction heating, In: New York, Marcel Dekker, (2003), pp. 37Search in Google Scholar

6 M.Çöl, M.Yılmaz: The determination of heat treatment parameters of X52 microalloyed steel after high frequency induction welding, Materials and Design27 (2006), pp. 50751210.1016/j.matdes.2004.11.025Search in Google Scholar

7 D. P.Fairchild, N. V.Bangaru, J. Y.Koo, P. L.Harrison, A.Ozekcin: A study concerning intercritical HAZ microstructure and toughness in HSLA steels In: Weld. J.70 (1991), pp. 321329Search in Google Scholar

8 W. S.Chang, R. W.Chang: Microstructure and Toughness in the HAZ of Ti-B Bearing Quenched and Tempered Steels, In: Proceedings of the second international conference on HSLA steels, Beijing, China; (1990), pp. 507512Search in Google Scholar

9 Y.Changchun: Metallographic Examination Evaluation Criteria and Control for ERW Pipe Production, Tube Int.153 (1996), pp. 153155.Search in Google Scholar

10 Z.Wei, L.Yong, W.Li, L.Bin: Numerical simulation and physical analysis for dynamic behaviors of P/M TiAl alloy in hot-packed forging process, Trans. Nonferrous Met. Soc. China22 (2012), pp. 90190610.1016/S1003-6326(11)61263-6Search in Google Scholar

11 D.Zou, Y.Han, D.Yan, D.Wang, W.Zhang, G.Fan: Hot workability of 00Cr13Ni5Mo2 supermartensitic stainless steel, Materials and Design32 (2011), pp. 4443444810.1016/j.matdes.2011.03.067Search in Google Scholar

12 W. E.Min-xian, W.Shu-qi, W.Lan, C.Xiang-hong, C.Kang-min: Selection of Heat Treatment Process and Wear Mechanism of High Wear Resistant Cast Hot-Forging Die Steel Journal of Iron and Steel Research, International19 (5) (2012), pp. 505710.1016/S1006-706X(12)60099-5Search in Google Scholar

13 J. Z.Wang, Z. D.Lui, S. C.Cheng, H. S.Bao: Hot Deformation Behaviors of S31042 Austenitic Heat-Resistant Steel, Journal of Iron and Steel Research, International18 (10) (2011), pp. 5458, 79 10.1016/S1006-706X(12)60022-3Search in Google Scholar

14 M.Soltanpour, J.Yanagimoto: Material data for the kinetics of microstructure evolution of Cr-Mo-V steel in hot forming, Journal of Materials Processing Technology212 (2012), pp. 41742610.1016/j.jmatprotec.2011.10.004Search in Google Scholar

15 P. F.Bariani, S.Bruschi, T. D.Negro: Integrating physical and numerical simulation techniques to design the hot forging process of stainless steel turbine blades, International Journal of Machine Tools & Manufacture44 (2004), pp. 94595110.1016/j.ijmachtools.2004.01.020Search in Google Scholar

16 P.Cavaliere, E.Cerri, E.Evangelista: Isothermal forging of AA2618 + 20% Al2O3 by means of hot torsion and hot compression testsMaterials Science and Engineering A387–389 (2004), pp. 857861S0921509304007294Search in Google Scholar

17 L. G.Garza, C. J. V.Tyne: Surface hot-shortness of 1045 forging steel with residual copper, Journal of Materials Processing Technology159 (2005), pp. 16918010.1016/j.jmatprotec.2004.05.004Search in Google Scholar

18 G.Noll, C.Lipson: Allowable working stresses. In: Proc. Soc. Exp. Anal.3 (2) (1946), pp. 89109Search in Google Scholar

19 G.Hankins, M.Becker: The fatigue resistance of unmachined forged steels. In: J. Iron Steel Inst.126, (1932), pp. 205236.Search in Google Scholar

20 K.Adamaszek, P.Broz: Decarburization and hardness changes in carbon steels caused by high temperature surface oxidation in ambient air. In: Diffus. Defect. Data: Defect Diffus. Forum194: 1701–6 (2001), pp. 1610.4028/www.scientific.net/DDF.194-199.1701Search in Google Scholar

21 T.Ishikawa: Modeling the microstructural evolution and mechanical properties of forged parts (In: Japanese), Casting, Forging and Heat Treatment (1995), pp. 2935Search in Google Scholar

22 S. I. J.Yong, H. P.Biao, Z.Ji: Design for Isothermal Forging of Ti-46. 5Al-2. 5V-1. 0Cr-0. 3Ni Alloy, Journal of Iron and Steel Research, International. 17(8) (2010), pp. 6773S1006706X10601318Search in Google Scholar

23 S. A.McKelvey, A.Fatemi: Surface finish effect on fatigue behavior of forged steel, International Journal of Fatigue36 (2012), pp. 13014510.1016/j.ijfatigue.2011.08.008Search in Google Scholar

24 A.Çapar: The effect of forging and different cooling condition on microstructure and mechanical properties of microalloyed forging steels (In Turkish), M. Sc. Thesis, Zonguldak Karaelmas University, Graduate School of Natural and Applied Sciences, Department of Metal Education (2005), pp. 3646Search in Google Scholar

25 S.Zinn, S. L.Semiatin: Elements of induction heating design, control and applications, EPRI, ASM International, USA (1988), pp. 3, 1213Search in Google Scholar

Published Online: 2014-10-01
Published in Print: 2014-03-03

© 2014, Carl Hanser Verlag, München

Downloaded on 28.11.2023 from https://www.degruyter.com/document/doi/10.3139/120.110555/html
Scroll to top button