Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 20, 2014

Effect of the Purging Gas on Properties of Ti Stabilized AISI 321 Stainless Steel TIG Welds

Wirkung des Spülgases auf die Eigenschaften von WIG-Schweißungen aus Ti-stabilisiertem AISI 321 Edelstahl
  • Emel Taban , Erdinc Kaluc and T. Serkan Aykan
From the journal Materials Testing

Abstract

Gas purging is necessary to provide a high quality of stainless steel pipe welding in order to prevent oxidation of the weld zone inside the pipe. AISI 321 stabilized austenitic stainless steel pipes commonly preferred in refinery applications have been welded by the TIG welding process both with and without the use of purging gas. As purging gases, Ar, N2, Ar +N2 and N2 + 10% H2 were used, respectively. The aim of this investigation is to detect the effect of purging gas on the weld joint properties such as microstructure, corrosion, strength and impact toughness. Macro sections and microstructures of the welds were investigated. Chemical composition analysis to obtain the nitrogen, oxygen and hydrogen content of the weld root was done by Leco analysis. Ferrite content of the beads including root and cap passes were measured by a ferritscope. Vickers hardness (HV10) values were obtained. Intergranular and pitting corrosion tests were applied to determine the corrosion resistance of all welds. Type of the purging gas affected pitting corrosion properties as well as the ferrite content and nitrogen, oxygen and hydrogen contents at the roots of the welds. Any hot cracking problems are not predicted as the weld still solidifies with ferrite in the primary phase as confirmed by microstructural and ferrite content analysis. Mechanical testing showed no significant change according to the purge gas. AISI 321 steel and 347 consumable compositions would permit use of nitrogen rich gases for root shielding without a risk of hot cracking.

Kurzfassung

Gasspülung ist notwendig, um eine hohe Qualität von Rohrschweißungen aus Edelstahl zu erzielen und eine Oxidation der Schweißzone im Rohrinneren zu vermeiden. Rohre aus AISI 321 stabilisierten austenitischen Edelstahl werden häufig für Raffinerie-Anwendungen favorisiert. Sie wurden mit dem WIG-Schweißverfahren mit und ohne Verwendung von Spülgas geschweißt. Als Spülgase wurden Ar, N2, Ar + N2 sowie N2 + 10% H2 verwendet. Das Ziel dieser Untersuchung ist es, die Wirkung von Spülgas auf die Schweißnahteigenschaften wie Mikrostruktur, Korrosion, Festigkeit und Kerbschlagzähigkeit herauszufinden. Makroschliffe und Mikrostrukturen der Schweißungen wurden untersucht. Der Stickstoff-, Sauerstoff- und Wasserstoffgehalt der Schweißnahtwurzel wurde mittels dem Leco-Analysesystem ermittelt. Der Ferritgehalt der Schweißlagen, einschließlich der Wurzel und Decklagen, wurde mit dem Ferritscope gemessen. Darüberhinaus wurde die Vickers-Härte (HV10) analysiert. Intergranularer Korrosionstests und Lochfraßtests wurden angewendet, um die Korrosionsbeständigkeit aller Schweißnähte zu bestimmen. Die Art des Spülgases beeinflusst die Lochfraßkorrosion sowie den Ferritgehalt und die Stickstoff-, Sauerstoff- und Wasserstoffgehalte in den Wurzelschweißungen. Heißrissprobleme sind nicht zu prognostizieren, solange die Schweißung primärferritisch erstarrt. Dies wurde durch Analyse des Ferritgehaltes und der Mikrostruktur bestätigt. Mechanische Tests zeigten keine signifikanten Änderungen in Abhängigkeit vom Spülgas. Die Kombination von AISI 321 Stahl und 347 Schweißzusatz würde die Verwendung von stickstoffreichen Gasen als Wurzelschutz ohne Heißrissgefahr erlauben.


*Correspondence Address, Assoc. Prof. Dr. Emel Taban Kocaeli University, Faculty of Engineering, Department of Mechanical Engineering, 41380 Kocaeli, Turkey. E-mail:

Dr. Emel Taban, born in 1980, received her BS, MSc and PhD from the Department of Mechanical Engineering of the University of Kocaeli, Turkey, in 2002, 2004 and 2007, respectively. She has been working as Associate Professor in that department and is the Vice Director of the Welding Research Center. Her major interests and expertise include welding and weldability of stainless steels, high alloyed steels and aluminum alloys using conventional and advanced welding processes.

Dr. Erdinc Kaluc, born in 1958, received his BS, MSc and PhD degrees in Mechanical Engineering in 1980, 1982 and 1988, respectively. He has 30 years of experience in welding, metallurgy and welding of stainless steels, HSLA steels and aluminum alloys. He has been working as Professor in the Department of Mechanical Engineering of the University of Kocaeli, Turkey, and serves as Director of the Welding Research Center.

T. Serkan Aykan, born in 1982, received his BS degree in Metallurgical and Materials Engineering in 2006 and his International Welding Engineer Certificate in 2008. He has eight years of experience in welding metallurgy and welding of stainless steels as well as in advanced NDT methods. He has been working as Quality Control Superintendent at Tupras (Turkish Petroleum Refineries Corporation) in Kocaeli, Turkey, since 2008.


References

1 E. L.Bergquist, T.Huhtala, L.Karlsson: The effect of purging gas on 308L TIG root pass ferrite content, Welding in the World55 (3/4) (2011), pp. 576410.1007/BF03321287Search in Google Scholar

2 R.Saggau: Untersuchungen zum Einfluss gelber Anlauffarben auf das Lochkorrosionsverhalten geschweisster nichtrostender Stähle, PhD thesis, TU Braunschweig, Shaker-Verlag, ISBN 978-3832245214, 2005Search in Google Scholar

3 L.Ödegard, S. A.Fager: The pitting resistance of stainless steel welds, Australasian Welding Journal, Second quarter (1993), pp. 2426Search in Google Scholar

4 M.Fletcher: Gas purging optimizes root welds, Welding Journal85 (12) (2006), pp. 3840Search in Google Scholar

5 R. A.Sewell: Gas purging for pipe welding, Welding and Metal Fabrication1 (1997)Search in Google Scholar

6 L.Ödegård: Welding of stainless steels corrosion in welds: effect of oxides, slag and weld defects on the pitting resistance, Anti-Corrosion Methods and Materials4 (1996), Vol. 43, pp. 111710.1108/eb007396Search in Google Scholar

7 A. F.Petersens, O.Runnerstam: Selecting shielding gases for welding of stainless steels, Svetsaren47 (2) (1993), pp. 1115Search in Google Scholar

8 J.Cuhel, D.Benson: Maintaining corrosion resistance when welding stainless tube and pipe, Welding Journal91 (11) (2012), pp. 4750Search in Google Scholar

9 L. J.Li, T.Davis: Effect of purging gas oxygen levels on surface structure and mechanical properties of GTA welded type 304 stainless sanitary tube, Journal of Advanced Materials39 (4) (2007), pp. 1419Search in Google Scholar

10 J.McMaster: Using Inert Gases for Weld Purging, Welding Journal87 (5) (2008), pp. 4044Search in Google Scholar

11 T. G.Gooch: Welding new stainless steels for the oil and gas industry, March 2010, 16 pages, The Welding InstituteSearch in Google Scholar

12 AWS D18.1: 1999 An American National Standard, Specification for Welding of Austenitic Stainless Steel Tube and Pipe Systems in Sanitary (Hygienic) Applications, AWS, 10 pagesSearch in Google Scholar

13 J.Tusek, M.Suban: Experimental research of the effect of hydrogen in argon as a shielding gas in arc welding of high alloy stainless steel, International Journal of Hydrogen Energy25 (2000), pp. 369376 DOI:10.1016/S0360-3199(99)00033-6Search in Google Scholar

14 J. C.Lippold, D. J.Kotecki: Welding metallurgy and weldability of stainless steels, John Wiley & Sons, New Jersey, 2005Search in Google Scholar

15 N. N.: MIG welding stainless steel gas mixes and weld reality, http://www.weldreality.com/stainlesswelddata.htm, visited on 20.09.2014Search in Google Scholar

16 E.Taban, E.Kaluc, S.Aykan: Effect of the Purging Gas on Properties of 304H GTA Welds, Welding Journal93 (4) (2014), pp. 124s130sSearch in Google Scholar

Published Online: 2014-11-20
Published in Print: 2014-11-17

© 2014, Carl Hanser Verlag, München

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.3139/120.110655/pdf
Scroll to top button