Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 16, 2018

Testing low-cycle material properties with micro-specimens*

Prüfung der LCF-Eigenschaften mit Mikroproben
  • Dariusz Boroński
From the journal Materials Testing

Abstract

New possibilities of low cycle fatigue material properties testing with the use of micro-specimens are presented in this publication. The discussed solution is of great significance for analysis of local properties of a material, e. g. in welded structures. Properties of a material determined in the manner presented in this publication find application both in fatigue life assessment (fatigue life curves) and in material modeling (cyclic stress-strain curves), e. g. in numerical analysis of local strain and stress that occur in structural components.

Kurzfassung

In diesem Beitrag werden neue Möglichkeiten für die Prüfung der LCF-Eigenschaften mit Mikroproben vorgestellt. Die diskutierte Lösung hat große Signifikanz für die Analyse der lokalen Eigenschaften eines Materials, insbesondere in geschweißten Strukturen. Die Eigenschaften, die auf die in diesem Artikel vorgestellten Weise bestimmt wurden, finden sowohl in der Lebensdauerabschätzung (Lebensdauerkurven) als auch in der Materialmodellierung (zyklische Spannungs-Dehnungs-Kurven) Anwendung, insbesondere in der numerischen Analyse von lokalen Dehnungen und Spannungen, die in Strukturbauteilen auftreten.


§Correspondence Address, Prof. Dr. Dariusz Boroński, University of Technology and Life Sciences (UTP), Faculty of Mechanical Engineering, Department of Machine Design, al. prof. S. Kaliskiego 7, 85-789 Bydgoszcz, Poland, E-mail:

Prof. Dr. Dariusz Boroński, born in 1967, studied Mechanical Engineering at the University of Technology and Life Sciences in Bydgoszcz, Poland until 1992. Then he has been an academic teacher for machine design, mechatronics and experimental mechanics. His scientific interests focus on the fatigue of materials and structures, experimental mechanics and mechatronic. He has designed original research equipment for the testing of materials and structures. Currently, he holds a position as Professor at the University of Technology and Life Sciences in Bydgoszcz (Poland) and is Head of the Department for Machine Design at the Faculty of Mechanical Engineering.


References

1 R. C.Rice (Ed.): Fatigue Design Handbook, 3rd Edition, Society of Automotive Engineering, USA (1997)Search in Google Scholar

2 P. M.Koçak, S.Webster, J. J.Janosch, R. A.Ainsworth, R.Koers: FITNET Fitness-for-Service Procedure – Final Draft MK7 (2006)Search in Google Scholar

3 J.Schijve: Fatigue of Structures and Materials, Springer, Berlin (2009)10.1007/978-1-4020-6808-9Search in Google Scholar

4 Proc. Of the 17th International Ship and Offshore Structures Congress 16–21 August 2009 Seoul, Korea Volume 1, Committee III. 2 Fatigue And FractureSearch in Google Scholar

5 P. P.Milella: Fatigue and Corrosion in Metals, Springer, Berlin (2013)10.1007/978-88-470-2336-9Search in Google Scholar

6 T.Hirose, H.Sakasegawa, A.Kohyama, Y.Katoh, H.Tanigawa: Efect of specimen size on fatigue properties of reduced activation ferritic/martensitic steels, Journal of Nuclear Materials283–287 (2000), pp. 10181022Search in Google Scholar

7 C. E.Jaske, S. C.Deevi, S. S.Shademan: Fatigue and cyclic deformation behaviour of iron aluminide, Materials Science and EngineeringA258 (1998), pp. 211218Search in Google Scholar

8 W. N.Sharpe, B.Yuan: New applications of the interferometric strain/displacement gage, G. F.Lucas, P. C.McKeighan, J. S.Ransom (Eds.): Nontraditional Methods of Sensing Stress, Strain, and Damage in Materials and Structures, ASTM International (2001)Search in Google Scholar

9 S. M.Allameh, J.Lou, F.Kavishe, T.Buchheit, W. O.Soboyejo: An investigation of fatigue in LIGA Ni MEMS thin films, Materials Science and Engineering A371 (2004), pp. 25626610.1016/j.msea.2003.12.020Search in Google Scholar

10 C. J.Szczepanski, S. K.Jha, P. A.Shade, R.Wheeler, J. M.Larsen: Demonstration of an in situ microscale fatigue testing technique on a titanium alloy, International Journal of Fatigue57 (2013), pp. 13113910.1016/j.ijfatigue.2012.08.008Search in Google Scholar

11 S.Saito, K.Kikuchi, Y.Onishi, T.Nishino: Development of piezoelectric ceramics driven fatigue, Journal of Nuclear Materials307- 311 (2002), pp. 16091612Search in Google Scholar

12 D.Boroński, P.Kiedrowski: Investigations of an influence of a fiber-optics welding on their mechanical strength, Proc. of the XXIV Sympozjum Zmęczenie i Mechanika Pękania, Bydgoszcz-Pieczyska (2012) (in Polish)Search in Google Scholar

13 H. S.Cho, K. J.Hemker, K.Lian, J.Goettert, G.Dirras: Measured mechanical properties of LIGA Ni structures, Sensors and Actuators A103 (2003), pp. 5963Search in Google Scholar

14 N. N.Nemeth, L. J.Evans, O. M.Jadaan, W. N.Sharpe, G. M.Beheim, M. A.Trapp: Fabrication and probabilistic fracture strength prediction of high-aspect-ratio single crystal silicon carbide micro-specimens with stress concentration, Thin Solid Films515 (2007), pp. 3283329010.1016/j.tsf.2006.01.041Search in Google Scholar

15 D.Radaj: Review of fatigue strength assessment of nonwelded and welded structures based on local parameters, International Journal of Fatigue18 (1996), pp. 15317010.1016/0142-1123(95)00117-4Search in Google Scholar

16 N. E.Dowling, W. R.Brose, W. K.Wilson: A discussion of local strain approach to notched member fatigue life prediction, Westinghouse Scientific Paper 76-1E7-PALFA-P1 (1976)Search in Google Scholar

17 L. E.Tucker, R. W.Landgraf, W. R.Brose: SAE Report 740279, Automotive Engineering Congress (1974)Search in Google Scholar

18 H.Neuber: Kerbspannungslehre, Springer, Berlin (1958)10.1007/978-3-642-53069-2Search in Google Scholar

19 H.Neuber: Theory of stress concentration for shear-strained prismatical bodies with arbitrary nonlinear stress-strain law, ASME Journal of Applied Mechanics28 (1961), pp. 54455010.1115/1.3641780Search in Google Scholar

20 K.Molski, G.Glinka: A method of elastic- plastic stress and strain calculation at a notch root, Materials Science and Engineering50 (1981), pp. 93100Search in Google Scholar

21 G.Glinka: Energy density approach to calculation of inelastic strain-stress near notched and cracks. Engineering Fracture Mechanics22 (1985), pp. 48550810.1016/0013-7944(85)90148-1Search in Google Scholar

22 D.Boroński: Cyclic material properties distribution in laser welded joints, International Journal of Fatigue28 (2006), No. 4, pp. 34635410.1016/j.ijfatigue.2005.07.029Search in Google Scholar

23 D.Boroński: Material properties investigations with the use of micro-specimen, Material Science Forum726 (2012), pp. 515410.4028/www.scientific.net/MSF.726.51Search in Google Scholar

Published Online: 2018-05-16
Published in Print: 2015-02-02

© 2015, Carl Hanser Verlag, München

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.3139/120.110693/pdf
Scroll to top button