Accessible Requires Authentication Published by De Gruyter April 14, 2015

Cold formability of AISI 1020 steel sheets

Kaltverfombarkeit von AISI 1020 Stahlblechen
Mustafa Kemal Kulekci, Funda Kahraman, Ugur Esme and Bariş Buldum
From the journal Materials Testing

Abstract

A forming limit diagram (FLD) illustrates the behavior of sheet metal under different levels of strain. The line describing the behavior of the metal is called forming limit curve (FLC). Forming limit diagram provides information on the maximum stress the metal can undergo before fracturing or necking. The diagrams are constructed by using forming limit test of sheet metal and measuring the deformation. In this study, formability of AISI 1020 sheet metal with different thickness were investigated using experimental data obtained from forming limit test. Forming limit diagram, strain hardening exponent (n) and height of cup values have been obtained for evaluating formability of the studied material. After each test, deformation of the grid was measured by using Mylar band and the true major and true minor strains were computed. Same formability results have been found from the FLD, strain hardening exponent and height of the cup for studied materials.

Kurzfassung

Ein Diagram der Verformbarkeitsgrenze (Forming Limit Diagram (FLD)) illustriert das Verhalten von Metallblechen bei verchiedenen Dehnungsniveaus. Die Linie, die das Verhalten des Metalls beschreibt, wird Grenzformkurve (Forming Limit Curve (FLC)) genannt. Das Diagram zur Verformbarkeitsgrenze bietet Informationen über die maximalen Spannungen, die ein Metall vor einem Bruch oder einer Einschnürung aushalten kann. Solche Diagramme werden erstellt, in dem der Verformbarkeitsgrenztest für Metallbleche angewendet wird und hierbei die Deformation gemessen wird. In der diesem Beitrag zugrunde liegenden Studie wurde die Verformbarkeit von AISI 1020 Metallblechen mit unterschiedlicher Dicke untersucht, wobei die experimentell ermittelten Daten aus dem Verformbarkeitsversuch verwendet wurden. Hierbei wurden das Diagramm der Verformungsgrenze, der Verfestigungsexponent und die Höhe der jeweiligen Tassen ermittelt, um die Verformbarkeit des untersuchten Werkstoffes zu evaluieren. Nach jedem Versuch wurde die Deformation des Gitters mittels eines Mylar-Bandes gemessen und die wahren Haupt- und untergeordneten Dehnungen errechnet. Es wurden gleiche Verformbarkeitsergebnisse aus den FLD, dem Verfestigungsexponenten und der Tassenhöhe für den untersuchten Werkstoff ermittelt.


§Correspondence Address, Associated Prof. Dr. Ugur Esme, Mersin University Tarsus Technology Faculty, Institute of Natural and Applied Sciences, Department of Manufacturing Engineering, 33400 Tarsus-Mersin, Turkey,

Dr. Mustafa Kemal Kulekci is Professor at the Institute of Natural and Applied Science, Mersin University, Mersin, Turkey. He obtained his PhD degree from Gazi University, Ankara, Turkey in 2000. His research interests include CAD/CAM, welding, machinability of materials and non-traditional manufacturing processes.

Dr. Funda Kahraman is Associate Professor at the Institute of Natural and Applied Science, Mersin University, Mersin, Turkey. She obtained her PhD degree from Çukurova University in Adana, Turkey in 1994. Her research interests include engineering materials and manufacturing processes.

Dr. Ugur Esme is Associate Professor at the Institute of Natural and Applied Science, Mersin University, Mersin, Turkey. He obtained his PhD degree from Çukurova University, Adana, Turkey in 2006. His research interests include CAD/CAM, welding and modeling.

Bariş Buldum, born in 1979, received his Bachelor degree from the Faculty of Technical Education, Gazi University, Ankara, Turkey, in 2003 and his Master degree from Institute of Science at that same University in 2006. He has been a Phd student at Gazi University since 2009 and is a lecturer at Mersin University since 1997. Presently, he is working in Advanced Technology Education at the Research and Application Center, Mersin University, Turkey. His areas of interest are the machinability of metals, lightmetal cutting and design as well as construction.


References

1 R.Narayanasamy, R.Sowerby: Forming behaviour of some sheet steel materials when drawn through a conical die, Journal of Materials Processing Technology39 (1993), pp. 435310.1016/0924-0136(93)90007-S Search in Google Scholar

2 R.Narayanasamya, C.S.Narayanan: Forming limit diagram for interstitial free steels Part I, Materials Science and Engineering A399 (2005), pp. 29230710.1016/j.msea.2005.04.004 Search in Google Scholar

3 S.Panich, F.Barlat, V.Uthaisangsuk, S.Suranuntchai, S.Jirathearanat: Experimental and theoretical formability analysis using strain and stress based forming limit diagram for advanced high strength steels, Materials & Design51 (2013), pp. 75676610.1016/j.matdes.2013.04.080 Search in Google Scholar

4 M.Samuel: Numerical and experimental investigations of forming limit diagrams in metal sheets, Journal of Materials Processing Technology153–154 (2004), pp. 42443110.1016/j.jmatprotec.2004.04.095 Search in Google Scholar

5 M. H.Chen, L.Gao, D.W.Zuo, M.Wang: Application of the forming limit stress diagram to forming limit prediction for the multi-step forming of auto panels, Journal of Materials Processing Technology187–188 (2007), pp. 17317710.1016/j.jmatprotec.2006.11.178 Search in Google Scholar

6 A.Uenishi, C.Teodosiu: Constitutive modelling of the high strain rate behaviour of interstitial free steel, International Journal of Plasticity20 (2004), pp. 91593610.1016/j.ijplas.2003.06.004 Search in Google Scholar

7 K. S.Oh, K.H.Oh, J.H.Jang, D.J.Kim, K.S.Han: Design and analysis of new test methods for evaluation of sheet metal formability, Journal of Materials Processing Technology211 (2011), pp. 69570710.1016/j.jmatprotec.2010.12.004 Search in Google Scholar

8 A. F.Avila, E. L. S.Vieira: Proposing a better forming limit diagram prediction: A comparative study, Journal of Materials Processing Technology141 (2003), pp. 10110810.1016/S0924-0136(03)00162-6 Search in Google Scholar

9 H. J.Bong, F.Barlat, M.G.Lee, D.C.Ahn: The forming limit diagram of ferritic stainless steel sheets, experiments and modeling, International Journal of Mechanical Sciences64 (2012), pp. 11010.1016/j.ijmecsci.2012.08.009 Search in Google Scholar

10 M.Li, A.Chandra: Influence of strain-rate sensitivity on necking and instability in sheet metal forming, Journal of Materials Processing Technology96 (1999), pp. 13313810.1016/S0924-0136(99)00321-0 Search in Google Scholar

11 C.Meric, N.S.Koksal, B.Karlık: An investigation of deep drawing of low carbon steel sheets and applications in artificial neural networks, Mathematical & Computational Applications2 (1997), pp. 119125 Search in Google Scholar

12 S. B.Kim, H.Huh, H.H.Bok, M.B.Moon: Forming limit diagram of autobody steel sheets for high-speed sheet metal forming, Journal of Materials Processing Technology211 (2011), pp. 85186210.1016/j.jmatprotec.2010.01.006 Search in Google Scholar

13 S. S.Hecker: Simple technique for determining forming limit curves, Sheet Metal Industry53 (1975), pp. 671675 Search in Google Scholar

14 R.Narayanasamy, M.R.Chandran, N.L.Parthasarathi: Effect of annealing on formability of aluminium grade 19000, Materials & Design29 (2008), pp. 1633165310.1016/j.matdes.2006.12.019 Search in Google Scholar

15 S. P.Keeler: Determination of forming limits in automotive stampings, Sheet Metal Industry42 (1965), pp. 68369110.4271/650535 Search in Google Scholar

16 G. M.Goodwin: Application of strain analysis to sheet metal forming problems in the press shop, Metall Italiana60 (1968), pp. 76477410.4271/680093 Search in Google Scholar

17 R.Narayanasamy, C.S.Narayanan: Forming fracture and wrinkling limit diagram for steel sheets of different thickness, Materials & Design29 (2008), pp. 1467147510.1016/j.matdes.2006.09.017 Search in Google Scholar

18 F.Ozturk, D.Lee: Analysis of forming limits using ductile fracture criteria, Journal of Materials Processing Technology147 (2004), pp. 39740410.1016/j.jmatprotec.2004.01.014 Search in Google Scholar

19 J. Z.Gronostajski, Z.Zimniak: Theoretical simulation of sheet behaviour in forming process, Journal of Materials Processing Technology31 (1992), pp. 576310.1016/0924-0136(92)90006-E Search in Google Scholar

20 D.Banabic, I.R.Dorr: Prediction of forming limit diagrams in pulsatory straining, Journal of Materials Processing Technology45 (1994), pp. 55155610.1016/0924-0136(94)90397-2 Search in Google Scholar

21 D. B.Rocha, J. B. D.Rocha, J.M.Jalinier: Prediction of forming limit diagrams of anisotropic sheets in linear and nonlinear loading, Material Science and Engineering68 (1985), pp. 15116410.1016/0025-5416(85)90404-5 Search in Google Scholar

22 B.Lian, J.Lian, B.Baudelet: Forming limit diagram of sheet metal in the negative minor strain region, Material Science and Engineering137 (1987), pp. 13714410.1016/0025-5416(87)90448-4 Search in Google Scholar

23 O.Fahrettin, L.Daeyong: Analysis of forming limits using ductile fracture criteria, Journal of Materials Processing Technology147 (2004), pp. 39740410.1016/j.jmatprotec.2004.01.014 Search in Google Scholar

24 S. D.Kumar, P. P. K.Narasimhan: A new criterion to predict necking failure under biaxial stretching, Journal of Materials Processing Technology45 (1994), pp. 58358810.1016/0924-0136(94)90402-2 Search in Google Scholar

25 J.Danckert: Experimental investigation of a square cup deep drawing process, Journal of Materials Processing Technology50 (1995), pp. 37538410.1016/0924-0136(94)01399-L Search in Google Scholar

26 R.Narayanasamy, C.S.Narayanan: Experimental analysis and evaluation of forming limit diagram for interstitial free steels, Materials & Design28 (2006), pp. 1490151210.1016/j.matdes.2006.03.010 Search in Google Scholar

Published Online: 2015-04-14
Published in Print: 2015-03-02

© 2015, Carl Hanser Verlag, München