Accessible Requires Authentication Published by De Gruyter April 14, 2015

Failure of porcelain coated heating elements used in regenerative air preheaters

Versagen von Porzellan-beschichteten Wärmeelementen in einem erneuerbaren Luftvorerhitzer
Wanida Pongsaksawad, Siam Kaewkumsai, Sikharin Sorachot and Ekkarut Viyanit
From the journal Materials Testing

Abstract

Sulfuric acid dew point corrosion is still a matter of concern with respect to early failure of heating elements used for air preheating in thermal power plants. Therefore, corrosion protection by means of porcelain enamel coatings is widely used. However, insufficient protective properties of the coating can result in a drastic decrease in service life. In the present study, failure analysis was comparatively performed on damaged heating elements showing different degrees of damage after approximately 1.5 years in service in a thermal power plant. The analytical results indicated that a lower degree of damage was observed for the heating element having higher content of silica. The protective properties of coatings decreased with the increasing pore density formed in the coating layer. The heating element coated with a harder porcelain layer was less severely attacked.

Kurzfassung

Die Schwefelsäure-Taupunktskorrosion ist immer noch bedenklich einzustufen, hinsichtlich des vorzeitigen Versagens von Wärmeelementen, die für Luft-Vorerhitzer in Wärmekraftwerken verwendet werden. Daher wird häufig ein Korrosionsschutz unter Verwendung von Porzellan-Email-Beschichtungen angewendet. Doch unzureichende Schutzeigenschaften der Beschichtungen können sich in Form einer drastischen Reduktion der Lebensdauer auswirken. In der diesem Beitrag zugrunde liegenden Studie, wurde eine vergleichende Schadensanalyse an geschädigten Heizelementen durchgeführt, die verschiedene Schädigungsgrade nach einer Nutzungsdauer von 1,5 Jahren in einem Kraftwerk aufwiesen. Die analytischen Ergebnisse zeigen auf, dass sich ein geringerer Schädigungsgrad bei Elementen mit einem höheren Siliziumanteil einstellt. Die Schutzeigenschaften der Beschichtungen nehmen mit zunehmender Porendichte in der Schicht ab. Das Heizelement, das mit einer härteren Porzellanschicht versehen war, wurde weniger stark angegriffen.


§Correspondence Address, Dr.-Ing. Ekkarut Viyanit, Materials Reliability Research Unit, National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 114 Thailand Science Park, Pathumthani 12120, Thailand,

Dr. Wanida Pongsaksawad, born in 1978, is a researcher at the Failure Analysis and Surface Technology Lab, Materials Reliability Research Unit, National Metal and Materials Technology Center (MTEC) in Pathumthani, Thailand. She obtained her PhD degree in Materials Science and Engineering from Massachusetts Institute of Technology (MIT), USA in 2006. Her research areas include cathodic protection, electrochemical process and numerical simulation in corrosion technology.

Siam Kaewkumsai, born in 1975, is Senior Engineer at the Failure Analysis and Surface Technology Lab, Materials Reliability Research Unit, National Metal and Materials Technology Center (MTEC), Pathumthani, Thailand. He received his master degree in Metallurgical Engineering from King Mongkut's University of Technology Thoburi, Thailand in 2007. His areas of expertise are failure analysis and fracture mechanics.

Sikharin Sorachot, born in 1982, is Electrical Engineer at the Failure Analysis and Surface Technology Lab, Materials Reliability Research Unit, National Metal and Materials Technology Center (MTEC), Pathumthani, Thailand. He received his bachelor degree in Electrical Engineering from Mahanakhon University, Thailand in 2004. His areas of expertise are cathodic protection and atmospheric corrosion.

Dr,-Ing. Ekkarut Viyanit, born in 1972, is a researcher and Head of the Failure Analysis and Surface Technology Lab, Materials Reliability Research Unit, National Metal and Materials Technology Center (MTEC), Pathumthani, Thailand. He received his Dr.-Ing. degree in Materials Engineering from Helmut-Schmidt University, Hamburg, Germany in 2005. His areas of expertise include corrosion protection, failure analysis and joining of metals.


References

1 http://www.alstom.com/Global/Germany/Resources/Documents%20-%20Brochures/power_air%20preheater_ljungstrom-air-preheaters.pdf Search in Google Scholar

2 http://www.bwe.dk/download/comp_brochures_pdf/bwe_aphggh.pdf Search in Google Scholar

3 E. K.Levy, N.Suranac: Sulfuric acid emissions from coal-fired boilers, Technical Report, Lehigh University, Pennsylvania EGAT communication document, 2006 Search in Google Scholar

5 A.Usami, H.Tezuka, T.Kuzunoki, T.Noguchi, S.Nishimura: Development of a water dew corrosion resistant new steel element for air preheaters at natural gas fired power plants, Nippon Steel Technical Report No.87 (2003), pp. 1013 Search in Google Scholar

6 C. M.Cotell, J.A.Sprague, F.A.Smidt: Surface Engineering, ASM Handbook, Vol.5, ASM International, Materials Park, Ohio (1996) Search in Google Scholar

7 L.Samiee, H.Sarpoolaky, A.Mirhabibi: Microstructure and adherence of cobalt containing and cobalt free enamels to low carbon steel, Materials Science and Engineering A458 (2007), pp. 889510.1016/j.msea.2006.12.108 Search in Google Scholar

8 M. T.Kim, S.Y.Chang, O.Y.Oh, J.B.Won, H.W.Park: Failure analysis of enamel-coated carbon steel heating elements of gas-gas heater for flue gas desulfurization system, Engineering Failure Analysis14 (2007), pp. 68669310.1016/j.engfailanal.2006.02.009 Search in Google Scholar

9 A. W. C. M.Dijk, H. J. B. M.Derksen: The influence of quality on the lifetime of enameled, regenerative heat exchangers, Ferro Techniek BV, Gaanderen, The Netherlands (2005) Search in Google Scholar

10 X.Yang, A.Jha, R.Brydson, R.C.Cochrane: The effects of a nickel oxide precoat on the gas bubble structures and fish-scaling resistance in vitreous enamels, Materials Science and Engineering A366 (2004), pp. 25426110.1016/j.msea.2003.08.003 Search in Google Scholar

11 A.Conde, J.J.de Damborenea: Electrochemical impedance spectroscopy for studying the degradation of enamel coatings, Corrosion Science44 (2002), pp. 1555156710.1016/S0010-938X(01)00149-4 Search in Google Scholar

12 F. S.Shieu, K.C.Lin, J.C.Wong: Microstructure and adherence of porcelain enamel to low carbon steel, Ceramics International25 (1999), pp. 273410.1016/S0272-8842(97)00080-1 Search in Google Scholar

13 http://www.engineershandbook.com/MfgMethods/porcelainenameling.htm Search in Google Scholar

14 B. W.King, H.P.Tripp, W.H.Duckworth: Nature of adherence of porcelain enamels to metals, Journal of the American Ceramic Society42 (1959), pp. 50452510.1111/j.1151-2916.1959.tb13567.x Search in Google Scholar

15 R.Venkataraman, G.Das, S.R.Singh, L.C.Pathak, R.N.Ghosh, B.Venkataraman, R.Krishnamurthy: Study on influence of porosity, pore size, spatial and topological distribution of pores on microhardness of plasma sprayed ceramic coatings, Materials Science and Engineering A445–446 (2007), pp. 26927410.1016/j.msea.2006.09.042 Search in Google Scholar

16 B. K.Jang, H.Matsubara: Influence of porosity on hardness and Young's modulus of nanoporous EB-PVD TBCs by nanoindentation, Materials Letters59 (2005), pp. 3462346610.1016/j.matlet.2005.06.014 Search in Google Scholar

Published Online: 2015-04-14
Published in Print: 2015-03-02

© 2015, Carl Hanser Verlag, München