Accessible Requires Authentication Published by De Gruyter April 14, 2015

Microstructural and mechanical characterization of electric arc furnace (EAF) slag for use as abrasive grit material

Mikrostrukturelle und mechanische Charakterisierung von Schlacke aus elektrischem Lichtbogenofen (EFA) zur Verwendung als Abrasivmaterial
Şeyda Polat and Fulya Kahrıman
From the journal Materials Testing

Abstract

Steel slag, a by-product of the steelmaking process, may turn into a useful material with many different applications if it is properly characterized. In the present study, samples of electric arc furnace slag received from a local steel producer have been analyzed in an attempt to solve the problem of waste disposal. The slag microstructure has been evaluated by light and electron microscopes and elemental compositions of the phases are determined by microanalysis. The quantities and hardness values of the phases present in the microstructure are measured by image analysis and micro-hardness tester, respectively. Particle size distribution, particle shape and bulk chemical composition are also determined and compared with an abrasive grit material used in shipyards for paint removal. Results show that present slag has a high potential to be used as blasting abrasive in place of the expensive grit material.

Kurzfassung

Stahlschlacke, ein Nebenprodukt der Stahlherstellung könnte in ein vielfach und unterschiedlich verwendbares Material gewandelt werden, wenn es ausreichend charakterisiert wird. In der diesem Beitrag zugrunde liegenden Studie wurden Schlackeproben aus einem elektrischen Lichtbogenofen, die von einem lokalen Stahlproduzenten bereitgestellt wurden, analysiert, um das Abfallproblem zu beseitigen. Die Mikrostruktur der Schlacke wurde mittels Licht- und Elektronenmikroskopie evaluiert. Die Mengenanteile und die Härtewerte der in der Mikrostruktur vorhandenen Phasen wurden mittels Bildanalyse und Mikrohärtemeßgerät gemessen. Die Verteilung der Partikelgröße, die Partikelform und die generelle chemische Zusammensetzung wurden ebenfalls bestimmt und mit einem Abrasivmaterial, wie es im Schiffbau zur Farbentfernung verwendet wird, verglichen. Die Ergebnisse zeigen, dass die untersuchte Schlacke großes Potential für die Verwendung als Strahlmittel anstelle von teuren Abrasivmaterialien besitzt.


§Correspondence Address, Assist. Prof. Dr. Şeyda Polat, Department of Metallurgical and Materials Engineering, Kocaeli University, Umuttepe Campus, 41380 Kocaeli Turkey,

Dr. Şeyda Polat graduated from Middle East Technical University, Department of Metallurgical Engineering, Ankara, Turkey. She received her MSc degree in 1980 and her PhD degree in 1987 in Materials Science and Engineering at the University of Illinois at Urbana-Champaign, USA. She worked as a research scientist at BRISA Bridgestone Sabancı Tire Manufacturing and Trading Inc., Kocaeli, Turkey (1988–2002), then became a faculty member at Kocaeli University. Her research interests include phase transformations, composite materials, tire technology and materials characterization.

Fulya Kahrıman graduated from Kocaeli University, Department of Metallurgical and Materials Engineering, Kocaeli, Turkey. She received her MSc degree from the same department in 2008. She is currently working as a research assistant at Kocaeli University, Department of Metallurgical and Materials Engineering, where she is a PhD student. Her research interests are metallography, materials characterization, fractography and aluminum alloys.


References

1 http://www.bsw-kehl.de/bsw-de-wAssets/docs/umweltschutz/14-0555_BSW_Umwelterklaerung_2014_eng_WEB.pdf Search in Google Scholar

2 http://www.nationalslag.org/sites/nationalslag/files/documents/nsa_182-6_properties_and_uses_slag.pdf Search in Google Scholar

3 Ľ.Mihok, P.Demeter, D.Baricová, K.Seilerová: Utilization of ironmaking and steelmaking slags, Metalurgija45 (2006), pp. 163168 Search in Google Scholar

4 H.Motz, J.Geiseler: Products of steel slags as opportunity to save natural resources, Waste Management21 (2001), pp. 28529310.1016/S0956-053X(00)00102-1 Search in Google Scholar

5 M. F.Rojas, M. I.Sánchez de Rojas: Chemical assessment of the electric arc furnace slag as construction material: Expansive compounds, Cement and Concrete Research34 (2004), pp. 1881188810.1016/j.cemconres.2004.01.029 Search in Google Scholar

6 H.Shen, E.Forssberg: An overview of recovery of metals from slags, Waste Management23 (2003), pp. 93394910.1016/S0956-053X(02)00164-2 Search in Google Scholar

7 D. M.Proctor, K.A.Fehling, E.C.Shay, J.L.Wittenborn, J.J.Green, C.Avent, R.D.Bigham, M.Connolly, B.Lee, T.O.Shepker, M.A.Zak: Physical and chemical characteristics of blast furnace, basic oxygen furnace and electric arc furnace steel industry slags, Environmental Science and Technology34 (2000), pp. 1576158210.1021/es9906002 Search in Google Scholar

8 A.Rai, J.Prabakar, C.B.Raju, R.K.Morchalle: Metallurgical slag as a component in blended cement, Construction and Building Materials16 (2002), pp. 48949410.1016/S0950-0618(02)00046-6 Search in Google Scholar

9 Y.Topkaya, N.Sevinç, A.Günaydın: Slag treatment at Kardemir integrated iron and steel works, International Journal of Mineral Processing74 (2004), pp. 313910.1016/j.minpro.2003.08.005 Search in Google Scholar

10 N.Faraone, G.Tonello, E.Furlani, S.Maschio: Steelmaking slag as aggregate for mortars: Effects of particle dimension on compression strength, Chemosphere77 (2009), pp. 1152115610.1016/j.chemosphere.2009.08.002 Search in Google Scholar

11 V. A.Mymrin, H.A.Ponte, M. J. J. S.Ponte, A.M.Maul: Structure formation of slag-soil construction materials, Materials and Structures38 (2005), pp. 10711310.1617/14123 Search in Google Scholar

12 H.Alanyalı, M.Çöl, M.Yılmaz, Ş.Karagöz: Application of magnetic separation to steelmaking slags for reclamation, Waste Management26 (2006), pp. 1133113910.1016/j.wasman.2006.01.017 Search in Google Scholar

13 H.Alanyalı, M.Çöl, M.Yılmaz, Ş.Karagöz: Concrete produced by steelmaking slag (basic oxygen furnace) addition in Portland cement, International Journal of Applied Ceramic Technology6 (2009), pp. 73674810.1111/j.1744-7402.2008.02317.x Search in Google Scholar

14 F. G.Kahrıman: Characterization of electrical arc furnace slag to be used as grit material, MSc Thesis, Kocaeli University, Turkey (2008) Search in Google Scholar

15 M.Tossavainen, F.Engstrom, Q.Yang, N.Menad, M.L.Larsson, B.Bjorkman: Characteristics of steel slag under different cooling conditions, Waste Management27 (2007), pp. 1335134410.1016/j.wasman.2006.08.002 Search in Google Scholar

16 B.Das, S.Prakash, P. S. R.Reddy, V.N.Misra: An overview of utilization of slag and sludge from steel industries, Resources, Conservation and Recycling50 (2007), pp. 405710.1016/j.resconrec.2006.05.008 Search in Google Scholar

17 http://www.metabrasive.com/choosing_abrasive.htm Search in Google Scholar

18 V.Chaskar, B.Klein: Slag Reclamation in the 21st Century, Proceedings of the 25th Annual British Columbia Mine Reclamation Symposium, Campbell River, BC, Canada (2001), pp. 214223 Search in Google Scholar

19 C.Pellegrino, V.Gaddo: Mechanical and durability characteristics of concrete containing EAF slag as aggregate, Cement & Concrete Composites31 (2009), pp. 66367110.1016/j.cemconcomp.2009.05.006 Search in Google Scholar

20 A.Momber, Blast cleaning technology, 1st ed., Springer Verlag, Heidelberg, Germany (2008) Search in Google Scholar

21 D.Hansel: Abrasive blasting systems, Metal Finishing98 (2000), pp. 2331, 33–37 10.1016/S0026-0576(00)82333-8 Search in Google Scholar

22 G. E.Totten: Steel Heat Treatment Handbook, 2nd ed., CRC Press, Boca Raton (2007) Search in Google Scholar

Published Online: 2015-04-14
Published in Print: 2015-03-02

© 2015, Carl Hanser Verlag, München