Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 15, 2015

Mechanical and physical properties of hybrid reinforced (Al/B4C/Ni(K)Gr) composite materials produced by hot pressing

Mechanische und physikalische Eigenschaften von hybridverstärkten und mittels Heißpressen hergestellten Al/B4C/Ni(K)Gr Kompositwerkstoffen
Engin Nas and Hasan Gökkaya
From the journal Materials Testing

Abstract

In this study, the mechanical and physical properties of hybrid reinforced (Al/B4C/Ni(K)Gr) metal matrix composite (MMC) materials were investigated. The MMC materials were produced using the powder metallurgy (PM) production method of hot pressing (HP). The aluminum alloy Alumix 13 was used as matrix material and boron carbide (B4C) and nickel-coated graphite (Ni(K)Gr) as reinforcement elements. The microstructural characteristics, hardness, 3-point bending strength and density values of the produced hybrid reinforced MMC materials were determined. The reinforcement element B4C was kept at constant concentration of 8 wt.-%. Four different MMC materials were produced with the addition of 0, 3, 5 and 7 wt.-% Ni(K)Gr in the B4C. From the SEM images of the MMC materials produced by the HP technique, it was observed that the reinforcement element exhibited a uniform distribution. Moreover, the particles showed an approach to each other depending on the particle size and the amount (wt.-%) of the reinforcement element. With increasing graphite content in the structure density, hardness and 3-point bending test values decreased.

Kurzfassung

In der diesem Beitrag zugrunde liegenden Studie wurden die mechanischen und die physikalischen Eigenschaften von hybridverstärkten Al/B4C/Ni(K)Gr Metallmatrixkompositen (Metal Matrix Composite (MMC)) untersucht. Die MMC wurden mittels Pulvermetallurgie (Powder Metallurgy (PM)) und Heißpressens (Hot Pressing (HP)) hergestellt. Als Matrixmaterial wurde die Aluminiumlegierung Alumix 13 verwendet und Borcarbid (B4C) sowie nickelbeschichtetes Graphit (Ni(K)Gr) als Verstärkungselemente eingesetzt. Es wurden die mikrostrukturellen Charakteristika, die Härte, die Dreipunktbiegefestigkeit und die Dichtewerte der so hergestellten hybridverstärkten MMC-Werkstoffe bestimmt. Die Verstärkungskomponente B4C wurde dabei konstant auf einem Anteil von 8 wt.-% gehalten. Es wurden vier verschiedene MMC-Materialien mittels Zugabe von 0, 3, 5 und 7 wt.-% Ni(K)Gr in B4C hergestellt. Aus den rasterlektronenmikroskopischen Aufnahmen der mittels HP-Technik hergestellten MMC-Werkstoffe wird ersichtlich, dass die jeweilige Verstärkungskomponente eine gleichmäßige Verteilung aufweist. Darüber hinaus wiesen die Partikel einen Bezug zueinander auf, abhängig von der Partikelgröße und dem Gehalt (wt.-%) der Verstärkungskomponente. Mit steigendem Graphitgehalt in der Mikrostruktur nahmen Dichte, Härte und Dreipunktbiegefestigkeit ab.


§Correspondence Address, MSc Engin Nas, Cumayeri Vocational School, Industrial Molding, Düzce University, 81000 Düzce, Turkey, E-mail:

Engin Nas, born in 1983, graduated from Zonguldak Karaelmas University, Turkey. He was a student at the Faculty of Karabük Technical Education, Mechanical Education Department, Karabük University, Turkey. He completed his MSc at the same university and is presently continuing his PhD education in the Machine Engineering Department of Karabük University. He has been working at the Cumayeri Vocational School, Düzce University, Turkey since 2009.

Dr. Hasan Gökkaya, born in 1971, graduated from Gazi University, Ankara, Turkey. He completed his MSc at the same university and also received his PhD from that university. Currently, he is Professor of Engineering at Karabük University in Turkey.


References

1 WilliamC.Jr.Harrigan: Commercial processing metal of matrix composites, Materials Science and EngineeringA244 (1998), pp. 757910.1016/S0921-5093(97)00828-9Search in Google Scholar

2 KaczmarJ. W., PietrzzakK., WlasinskiW.: The production and application of metal matrix composite materials, Journal of Materials Processing Technology106 (2000), pp. 586710.1016/S0924-0136(00)00639-7Search in Google Scholar

3 TurhanH., YıldızT., GulençB.: Microstructure and mechanical properties of Cu/FeMnp and Cu/FeCrp metal matrix composites produced by powder metallurgy techniques, Science and Eng. Journal of Fırat Univ. 19 (2007), No. 4, pp. 569574Search in Google Scholar

4 LloydD. J.: Particulate reinforced aluminum and magnesium matrix composites, Int. Mater. Rev. 39 (1994), No. 1, pp. 12310.1179/imr.1994.39.1.1Search in Google Scholar

5 LinC. Y., LiH. C., LiouS. S., ShieT. M.: Mechanism of plastic deformation of powder metallurgy metal matrix composites of Cu-Sn/SiC and 6061/SiC under compressive stress, Mater. Sci. and Eng. A373 (2004), No. 1-2, pp. 36336910.1016/j.msea.2004.02.011Search in Google Scholar

6 UpadhyayaS. G.: Powder Metallurgy Technology, Cambridge International Science Publishing, Cambirdge, UK (2002)Search in Google Scholar

7 Hydrogen Program Plan, FY 1993-FY 1997, U. S. Department of Energy, National Renewable Energy Laboratory in Golden, Colo (1998)Search in Google Scholar

8 KingeryW. D., BowenH. K., UhlmannD. R.: Introduction to Ceramics, 2nd Ed., John Wiley & Sons, New York (1976)Search in Google Scholar

9 SuryanarayanaC.: Mechanical Alloying and Milling, Marcel Dekker, New York, USA (2004)10.1201/9780203020647Search in Google Scholar

10 MazumderS. K.: Composites Manufacturing, CRC Press LLC, US (2002)Search in Google Scholar

11 BaradaswaranA., PerumalA. E.: Infuluence of B4C on the tribological and mechanical proporties of Al 7075-B4C composites, Composites B54 (2013), pp. 14615210.1016/j.compositesb.2013.05.012Search in Google Scholar

12 VeereshG. B. K., RaoC. S. P., SevarajN., BhagyashekarM. S.: Studies on Al6061-SiC and Al 7075-Al203 metal matrix composites, J. Miner. Mater. Charact. Eng.9 (1) (2010), pp. 4355Search in Google Scholar

13 KhanK. B., KuttyT. R. G., SurappaM. K.: Hot hardness and indentation creep study on Al-5 % Mg alloy matrix – B4C particle reinforced composites; Mater. Sci. Eng. A.427 (2006), pp. 768210.1016/j.msea.2006.04.015Search in Google Scholar

14 ZhangH., RameshK. T., ChinE. S. C.: High strain rate response of aluminum 6092/B4C composites, Mater. Sci. Eng. A.384 (2004), pp. 263410.1016/j.msea.2004.05.027Search in Google Scholar

15 BaradeswaranA., PerumalA. E.: Study on mechanical and wear properties of Al 7075/Al2O3/graphite hybrid composites, Composites: Part B56 (2014), pp. 46447110.1016/j.compositesb.2013.08.013Search in Google Scholar

16 BaradeswaranA., PerumalA. E.: Wear and mechanical characteristics of Al 7075/graphite composites, Composites: Part B, 56 (2014), pp. 47247610.1016/j.compositesb.2013.08.073Search in Google Scholar

17 AmesW., AlpasA. T.: Wear mechanisms in hybrid composites of graphite-20Pct SiC in A356 aluminum alloy (Al-7 Pct Si-03 Pct Mg), Metall. Mater. Trans. A.26A (1995), pp. 859810.1007/BF02669796Search in Google Scholar

18 KestursatyaM., KimJ. K., RohatgiP. K.: Wear performance of copper-graphite composite and leaded copper alloy, Mater. Sci. Eng. A339 (2003), pp. 15015810.1016/s0921-5093(02) 00114-4Search in Google Scholar

19 YenB. K., IshiharaT.: Effect of humidity on friction and wear of Al-Si eutectic alloy and A1-Si alloy-graphite composites, Wear198 (1996), pp. 16917510.1016/0043-1648(96)06955-4Search in Google Scholar

20 BasavarajappaS., ChandramohanG., MahadevanA., ThangaveluM., SubramanianR., GopalakrishnanP.: Influence of sliding speed on the dry sliding wear behaviour and the subsurface deformation on hybrid metal matrix composite, Wear262 (7-8) (2007), pp. 1007101210.1016/j.wear.2006.10.016Search in Google Scholar

21 YangJ. B., LinC. B., WangT. C., ChuH. Y.: The tribological characteristics of A356.2Al alloy/Gr(p) composites, Wear257 (2004), pp. 9415210.1016/j.wear.2004.05.015Search in Google Scholar

22 LiuY., RohatgiP. K., RayS.: Tribological characteristics of aluminum-50 vol.-% pct graphite composite, Metall. Trans. A.A24 (1993), pp. 15115910.1007/BF02669612Search in Google Scholar

23 RohatgiP. K., RayS., LiuY.: Tribological properties of metal matrix-graphite particle composites, Int. Mater. Rev.3 (7) (1992), pp. 129152http://dx.doi.org/10.1179/imr.1992.37.1.129Search in Google Scholar

24 LiuY. B., LimS. C., RayS., RohatgiP. K.: Friction and wear of aluminum-graphite composites: The smearing process of graphite during sliding, Wear159 (1992), pp. 20120510.1016/0043-1648(92)90303-PSearch in Google Scholar

25 RohatgiP. K., LiuY., BarrT. L.: Tribological behavior and surface analysis of tribo deformed Al alloy-50 pet graphite particle composites, Metall. Trans. A.22A (1991), pp. 1435144110.1007/BF02660675Search in Google Scholar

26 TopcuI., GulsoyH. O., KadıogluN.,GulluogluA. N.: Processing and mechanical proporties of B4C reinforced Al matrix composites, Journal of Alloys and Compounds482 (2009), pp. 51652110.1016/j.jallcom.2009.04.065Search in Google Scholar

27 TorralbaJ. M., CostaC. E., VelascoF.: P/M aluminum matrix composites: An overview, Matter J., Mater. Process. Technol. 133 (2003), pp. 20320610.1016/S0924-0136(02)00234-0Search in Google Scholar

28 LuiC. H.: Structure and properties of boron carbide with aluminum incorporation, Mater. Sci. Eng. B72 (2000), pp. 232610.1016/S0921-5107(99)00597-8Search in Google Scholar

29 FogagnolaJ. B., Ruiz-NavasE. M., RobertM. H., TorralbaJ. M.: The effects of mechanical alloying on the compressibility of alumiium matrix composite powder, Mater. Sci. Eng. A355 (2003), pp. 505510.1016/S0921-5093(03)00057-1Search in Google Scholar

30 ShorowordK. M., HaseebA. S. M. A., CelisJ. P.: Tribo-surface characteristics of Al-B4C and Al-SiC composites worn under different contact pressures, Wear261 (2006), pp. 63464110.1016/j.wear.2006.01.023Search in Google Scholar

31 SchwartzK. M.: Emerging Engineering Materials: Design, Process, in: Applications, Technomic. Publ., Basel (1996)Search in Google Scholar

32 GayD., HoaS. V.: Composite Materials: Design and Applications, CRC Press, Boca Raton, USA (2007)10.1201/9781420045208Search in Google Scholar

33 ChungD. L.: Composite Materials: Functional Materials for Modern Technologies, Springer, London (2003)10.1007/978-1-4471-3732-0Search in Google Scholar

34 ChapmanT. R., NieszD. E., FoxR. T., FawcettT.: Wear-resistant aluminum-boron-carbide cermets for automotive brake applications, Wear236 (1999), pp. 818710.1016/S0043-1648(99)00259-8Search in Google Scholar

35 MorganP.: Carbon Fibers and Their Composites, Taylor & Francis, Boca Raton, USA (2005)10.1201/9781420028744Search in Google Scholar

36 BerthelotJ. M., ColeJ. M.: Composite Materials: Mechanial Behaviour and Structural Analyses, Springer, New York (1999)10.1007/978-1-4612-0527-2Search in Google Scholar

37 BowmanK.: Mechanical Behaviour of Materials, John Wiley & Sons, New York, USA (2004)Search in Google Scholar

38 GodeC.: Mechanical properties of hot pressed SiCp and B4Cp/Alumix 123 composites alloyed with minor Zr, Composites: Part B54 (2013), pp. 344010.1016/j.compositesb.2013.04.068Search in Google Scholar

39 SurG., GulesinM.: The effect of cutting tool properties on cutting forces in machining of hybrid reinforced composite with CBN cutting tools, 6th International Advanced Technologies Symposium, Turkey (2011)Search in Google Scholar

40 http://www.ecka-granules.com/en/products/aluminum-and-aluminum-alloys/Search in Google Scholar

41 KaraşoğluM., KaraoğluS.: Investigations of the effects of process and material factors on microstructure and mechanical properties in aluminum matrix composites produced by powder metallurgy, Engineering and Machine55 (2014), 649, pp. 1723Search in Google Scholar

42 LiY. Y., NgaiT. L., ZhangD. T., LongY., XiaW.: Effect of die wall lubrication on warm compaction powder metallurgy, Journal of Materials Processing Technology129 (2002), 1-3, pp. 35435810.1016/S0924-0136(02)00648-9Search in Google Scholar

43 NasE., GökkayaH.: The reproducibility of the Al matrix composite material reinforced with B4C via hot pressing, JESTECH16 (4) (2013), pp. 153159Search in Google Scholar

44 ASTM B312-96: Standard test method for green strength for compacted metal powder specimens (2002), pp. 1610.1520/B0312-96Search in Google Scholar

45 HasırcıH., GülF.: Investigation of abrasive wear behaviours in B4C/Al composites depending on reinforcement volume fraction, SDU International Technologic Science2 (2010), pp. 1521Search in Google Scholar

46 ToptanF., KertiI.: Production of aluminum matrix composites (reinforced with B4C) by casting method, 12th International Metallurgy-Material Conference2006, pp. 808812Search in Google Scholar

47 AkinG., MindivanH., ÇimenoğluH., KayaliS. E.: Investigation of wear behaviour of Al matrix boron carbide reinforced composites produced by powder metallurgy, 12th International Metallurgy-Material Conference2006, pp. 735740Search in Google Scholar

48 KennedyR. A., BramptonB.: The reactive wetting and incorporation of B4C particles into molten aluminum, Scripta Materialia44 (2001), pp. 1077108210.1016/S1359-6462(01)00658-3Search in Google Scholar

49 SurG., ŞahinY., GökkayaH.: Production of aluminum based particulate reinforced composites using molten metal mixing and squeeze casting methods, J. Fac. Eng. Arch20 (2005), pp. 233238Search in Google Scholar

50 MortensenA., CornieA. J., FlemingsC. M.: Solidification processing of metal-matrix composites, JOM40 (1988), pp. 121910.1007/BF03258826Search in Google Scholar

51 AkbulutH., DurmanM., YılmazF.: Production and investigation of properties of SiC ceramic particle reinforced aluminum-silicium metal based composites, 7th International Metallurgy-Materiel Conference1993, pp. 11831194Search in Google Scholar

52 DoğanM. A., KancaE., KökM.: Production of Al2O3 particle reinforced 6061 aluminum metal matrix composites, International Iron & Steel Symposium2012, pp. 558564Search in Google Scholar

53 AkhlaghiF., LajevardiA,, MaghanakiH. M.: Effects of casting temperature on the microstructure and wear resistance of compocast A356/SiCp composites: A comparison between SS and SL routes, J. Mater. Process Technol. 155-156 (2004), pp. 1874188010.1016/j.jmatprotec.2004.04.328Search in Google Scholar

54 RavindranP., ManisekarK., NarayanasamyR., NarayanasamyP.: Tribological behaviour of powder metallurgy-processed aluminum hybrid composites with the addition of graphite solid lubricant, Ceramics International39 (2013), pp. 1169118210.1016/j.ceramint.2012.07.041Search in Google Scholar

55 SureshaS., SridharaB. K.: Wear characteristics of hiybrid aluminum matrix composites reinforced with graphite and silicon carbide particulates, Composites Science and Technology70 (2010), pp. 1652165910.1016/j.compscitech.2010.06.013Search in Google Scholar

56 MahdaviS., AkhlaghiF.: Effect of the graphite content on the tribological behaviour of Al/Gr and Al/30SiC/Gr composites processed by in-situ powder metallurgy (IPM) method, Tribol. Lett. 44 (2011), pp. 11210.1007/s11249-011-9818-2Search in Google Scholar

57 LeeH. S., YeoJ. S.. HongS. H., YoonD. J., NaK. H.: The fabrication process and mechanical properties of SiCp/Al-Si metal matrix composites for automobile air- conditioner compressor pistons, Journal of Materials Processing Technology113 (2001), pp. 20220810.1016/S0924-0136(01)00680-XSearch in Google Scholar

58 SeoH. Y., KangG. C.: The effect of applied pressure on particle-dispersion characteristics and mechanical properties in melt-stirring squeeze-cast SiCp/Al composites, Journal of Materials Processing Technology55 (1995), pp. 37037910.1016/0924-0136(95)02033-0Search in Google Scholar

59 ÖdemirI., ÇöcenÜ., ÖnelK.: The effect of forging on the properties of particulate SiC- reinforced aluminum alloy composites, Composites Science and Technology60 (2000), pp. 41141910.1016/S0266-3538(99)00140-2Search in Google Scholar

60 HanY., LiuX., BianX.: In-situ TiB2 particulate reinforced near eutectic Al-Si alloy composites, Composite Part A33 (2002), pp. 43944410.1016/S1359-835X(01)00124-5Search in Google Scholar

Published Online: 2015-05-15
Published in Print: 2015-06-01

© 2015, Carl Hanser Verlag, München

Scroll Up Arrow