Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 31, 2015

Effect of abrasive water jet turning process parameters on surface roughness and material removal rate of AISI 1050 steel

Auswirkungen der Parameter des Abrasiv-Wasserstrahldrehprozesses auf die Oberflächenrauheit und die Materialabtragsrate eines AISI 1050 Stahls
Fuat Kartal and Hasan Gökkaya
From the journal Materials Testing

Abstract

The purpose of this study was to optimize and determine the most important abrasive water jet turning (AWJT) operational parameters, such as nozzle diameter (0.75 and 1.3 mm), nozzle feed rate (5, 25 and 45min−1), stand-off distance (2, 10 and 18 mm), abrasive flow rate (50, 150 and 350 g × min−1), and spindle speed (500, 1500 and 2500 min−1), regarding machining efficiency parameters, namely, average surface roughness Ra (µm) and material removal rate (mm3 × min−1), using AISI 1050 steel workpieces machined by abrasive water jet turning. Taguchi L18(21 × 34) orthogonal experimental design was used for the experimental design. Adequacy of the predicted linear regression model equations was tested using the method of ANOVA. These model equations were used to optimize the operational parameters of the surface roughness and material removal rate. Machinability charts, indicating the optimum processes with respect to the surface roughness and material removal rate for AISI 1050 steel workpieces, were developed and presented in this study. As a result of experimental studies, it is seen that nozzle feed rate proved to have the most significant impact on surface roughness by 48.7 %. Abrasive flow rate proved to have the most significant impact on material removal rate by 84.6 %. Using a nozzle diameter of 0.75 mm, the average surface roughness was improved while material removal rate decreased.

Kurzfassung

Der Zweck der diesem Beitrag zugrunde liegenden Studie ist es, die wichtigsten Funktionsparameter des Abrasiv-Wasserstrahldrehprozesses (Abrasive Water Jet Turning (AWJT)) zu bestimmen und zu optimieren, wie beispielsweise der Düsendurchmesser (0.75 und 1.3 mm), die Düsenzufuhrrate (5, 25 und 45 U × min−1), der Düsenabstand (2, 10 und 18 mm), die Abrasivflussrate (50, 150 und 350 g × min−1) und die Spindelgeschwindigkeit (500, 1500 und 2500 U × min−1, bezüglich der Bearbeitungseffizienzparameter, insbesonderen der durchschnittlichen Oberflächenrauheit Ra (µm) und der Materialabtragsrate (mm3 × min−1), wobei Werkstücke aus dem Stahl AISI 1050 verwendet wurden. Für das experimentelle Design wurde das orthogonale Verfahren nach Taguchi L18(21 × 34) angewandt. Die Eignung der vorhergesagten linearen Regressionsmodellgleichungen wurde unter Verwendung des ANOVA-Verfahrens überprüft. Diese Modellgleichungen wurden verwendet, um die Funktionsparameter der Oberflächenrauheit und der Materialabtragsrate zu optimieren. Es wurden Bearbeitbarkeitsdiagramme entwickelt und im Rahmen der zugrundeliegenden Studie vorgestellt, die den optimalen Prozess bezüglich Oberflächenrauheit und Materialabtragsrate für Werkstücke aus dem Stahl AISI 1050 anzeigen. Als ein Ergebnis der experimentellen Studien stellte sich heraus, dass die Düsenvorschubrate den größten Effekt von 48,7 % auf die Oberflächenrauheit hat. Die Abrasivflussrate zeigte die größte Wirkung in Bezug auf die Materialabtragsrate mit 84,6 %. Unter Verwendung eines Düsendurchmessers von 0,75 mm wurde die Oberflächenrauheit optimiert, während die Materialsabtragsrate abnahm.


§Correspondence Address, Assist. Prof. Dr. Fuat Kartal, Kastamonu University, Engineering and Architecture Faculties, Mechanical Engineering department, Kastamonu 37100, Turkey. E-mail:

Assist. Prof. Dr. Fuat Kartal, born in 1981, started his master course at Kocaeli University, Turkey, in 2006. He began to work as a lecturer in the Department of Machine and Metal Technology at Kastamonu University, Turkey, in 2008. He started his PhD in the Department of Mechanical Engineering at Karabük University, Turkey, in 2010. His research interests involve design of experiments, engineering experiments, CAD/CAM/CAE, advanced manufacturing methods, innovation and new product design.

Prof. Dr. Hasan Gökkaya, born 1971, is working at Karabük University in the Department of Mechanical Engineering. His current studies focus on Computer Aided Design (CAD), manufacturing and engineering, traditional and non-traditional manufacturing processes, workability, and computer aided process planning.


References

1 A.Momber, R.Kovacevic: Principles of Abrasive Waterjet Machining, Springer-Verlag, London, UK (1998)10.1007/978-1-4471-1572-4Search in Google Scholar

2 A.Hascalik, U.Caydas, H.Gurun: Effect of traverse speed on abrasive waterjet machining of Ti-6Al-4 V alloy, Meter. Des. (2007), pp. 1953195710.1016/j.matdes.2006.04.020Search in Google Scholar

3 M.Hashish: A model for abrasive water jet (AWJ) machining, J Eng Mater-T ASME (1989), pp. 15416210.1115/1.3226448Search in Google Scholar

4 F.Kartal, M. H.Cetin, H.Gökkaya, Z.Yerlikaya: Optimization of abrasive water jet turning parameters for machining of low density polyethylene material based on experimental design method, International Polymer Processing (2014), pp. 53554410.3139/217.2925Search in Google Scholar

5 M.Hashish: Optimization factors in abrasive water jet machining, Journal of Manufacturing Science and Engineering (1991), pp. 293710.1115/1.2899619Search in Google Scholar

6 J.Wang, W. C. K.Wong: A study of water jet cutting of metallic coated sheet steels, International Journal of Machine Tools and Manufacture (1999), pp. 85587010.1016/S0890-6955(98)00078-9Search in Google Scholar

7 Z. W.Zhong, Z. Z.Han: Turning of glass with abrasive water jet, Materials and Manufacturing Processes (2002), pp. 33934910.1081/AMP-120005380Search in Google Scholar

8 F.Kartal, H.Gokkaya: Turning with abrasive water jet machining – A review, Engineering Science & Technology (2013), pp. 113122Search in Google Scholar

9 F.Kartal, H.Gokkaya, M.Nalbant: Turning of (Cu-Cr-Zr) alloy with abrasive water jet, Proc. of the 21st International Conference on Water Jetting, Ottawa, Canada (2012), pp. 281288Search in Google Scholar

10 F.Kartal, H.Gokkaya: The effect of process parameters on machining volume and depth of cut in turning operation of AISI 1040 steel with abrasive water jet, Pamukkale University Journal of Engineering Sciences (2014), pp. 2024Search in Google Scholar

11 http://www.efunda.comSearch in Google Scholar

12 M.Nalbant, H.Gökkaya, G.Sur: Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning, Materials & Design (2007), pp. 1379138510.1016/j.matdes.2006.01.008Search in Google Scholar

13 M. S.Phadke: Quality Engineering Using Robust Design, Prentice Hall, Englewood Cliffs, New Jersey, USA (1989)Search in Google Scholar

14 R.Manu, N. R.Babu: An erosion-based model for abrasive water jet turning of ductile materials, Wear266 (2009), pp. 1091109710.1016/j.wear.2009.02.008Search in Google Scholar

15 A. I.Ansari, M.Hashish: Effect of abrasive water jet parameters on volume removal trends in turning, Journal of Manufacturing Science and Engineering (1995), pp. 47548410.1115/1.2803524Search in Google Scholar

16 M.Hashish: Macro characteristics of AWJ turned surfaces, Proc. of the WJTA American Water Jet Conference August Minneapolis, Minnesota, USA (2001), pp. 1821Search in Google Scholar

17 A.Henning: Modeling of turning operation for abrasive waterjets, Proc. of the 10th American Water Jet Conference August, Houston, Texas, USA (1999), pp. 1417Search in Google Scholar

Published Online: 2015-08-31
Published in Print: 2015-09-01

© 2015, Carl Hanser Verlag, München

Scroll Up Arrow