Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 22, 2016

Tribological behavior of Al2O3 and B4C particle-reinforced copper matrix investigated by the Taguchi method

Untersuchung des tribologischen Verhaltens einer mit Al2O3- und B4C-partikelverstärkten Kupfermatrix mit dem Taguchi-Verfahren
  • Yusuf Şahin and K. Emre Öksüz
From the journal Materials Testing

Abstract

There are many technical applications in which wear is a critical issue. Copper can be filled with particulate materials to enhance the tribological behavior, mechanical and physical properties as well. Copper matrix containing 10 vol.-% Al2O3 and B4C particles were produced using the powder metallurgy method and their dry wear behavior was investigated at different sliding conditions against a hardened alloy steel counterface using Taguchi technique. Four control factors like lubrication, load, sliding distance and hardness were designed in a L18 factorial orthogonal array for the experiments to investigate the wear behavior of the metal matrix composites. Moreover, a correlation derived from the results of Taguchi experimental design was proposed, resulting in a predictive equation for estimation of these properties. The experimental results showed that the weight loss was highly influenced by the lubrication factor, followed by the load factor. However, these were then followed by hardness and sliding distance. The estimated weight loss was calculated and a good agreement was observed between the predicted and actual weight loss at a confidence level of 90%. The wear resistance was significantly better for B4C particle-reinforced composites than that for the Al2O3 particle-reinforced composites. Moreover, the results were approved by scanning electron microscope micrographs of worn surfaces of the samples.

Kurzfassung

Es gibt viele technische Anwendungen, in denen Verschleiß ein kritisches Verhalten der Werkstoffe darstellt. Kupfer kann mit Partikelmaterialien versehen werden, um das trobologische Verhalten, sowie auch die mechanischen und physikalischen Eigenschaften zu verbessern. Eine Kupfermatrix mit 10 vol.-% Al2O3- und B4C-Partikeln wurde pulvermetallurgisch hergestellt und es wurde das Trockenverschleißverhalten bei verschiedenen Reibbedingungen gegen eine harte legierte Stahloberfläche mittels der Taguchi-Technik untersucht. Hierzu wurden vier Kontrollfaktoren, Schmierung, Kraft, Reibdistanz und Härte, in einem orthogonalen faktoriellen L18-Designarray für die entsprechenden Experimente in Bezug auf das Verschleißverhalten der Metall-Matrix-Komposite ausgewählt. Darüber hinaus wurde eine Korrelation aus den Ergebnissen des Taguchi-Versuchsdesigns abgeleitet, und zwar für eine Vorhersage zur Abschätzung der Eigenschaften. Die experimentellen Ergebnisse zeigen, dass der Gewichtsverlust stark durch den Schmierfaktor beinflusst wurde, gefolgt von der Kraft und diese wiederum von der Härte und der Reibdistanz. Es wurde der Gewichtsverlust abgeschätzt und es stellte sich ein gut übereinstimmendes Ergebnis zwischen den vorhergesagten und den tatsächlichen Gewichtsverlusten mit einer Wahrscheinlichkeit von 90% ein. Der Verschleißwiderstand für die mit B4C-partikelverstärkten Komposite war erheblich besser als der der Al2O3-partikelverstärkten Komposite. Außerdem wurden die Ergebnisse mit REM-Aufnahmen der verschlissenen Oberflächen der Proben überprüft.


*Correspondence Address, Kerim Emre Öksüz, Department of Materials and Metallurgy Engineering, Cumhuriyet University, 58140 Sivas, Turkey, E-mail:

Prof. Dr. Yusuf Şahin, born in 1954, received his PhD from Aston University in Birmingham, UK, in 1995 in the field of continuous boron reinforced MMCs based on fabrication, their mechanical, and wear behaviors. He has already published about 30 research papers in journals with different reputation. Furthermore, he has also published several books.

K. Emre Öksüz, born in 1984, is currently working as a research assistant at Cumhuriyet University, Sivas, Turkey. His primary research interest is materials science focusing on composite materials, wear mechanism and characterization techniques. He began his PhD studies at Sakarya University, Turkey, in 2011.


References

1 Y.Zhan, G.Zhang: Friction and wear behavior of copper matrix composites reinforced with SiC and graphite particles, Tribol. Lett.17 (2004), pp. 919510.1023/B:TRIL.0000017423.70725.1cSearch in Google Scholar

2 R.Rudolf, I.Anzel, V.Lazic, D.Stojic: The new approach of the production technique of discontinuous Cu-C composite, Association of Metallurgical Engineers of Serbia (AMES)13 (2007), pp. 107113Search in Google Scholar

3 D. B.Miracle: Metal matrix composites – From science to technological significance, Comp. Sci. Technol.65 (2005), pp. 2526252910.1016/j.compscitech.2005.05.027Search in Google Scholar

4 L.Gomidželović, E.Požega, A.Kostov, N.Vuković: Investigation of the structural, mechanical and electrical properties of Cu-Al-Zn shape memory alloys, Materials Testing56 (2014) No. 6, pp. 48648910.3139/120.110591Search in Google Scholar

5 Y.Zhan, G.Zhang: The effect of interfacial modifying on the mechanical and wear properties of SiCp/Cu composites, Mater. Lett.57 (2003), pp. 4583458610.1016/S0167-577X(03)00365-3Search in Google Scholar

6 S. C.Tjong, K. C.Lau: Tribological behaviour of SiC particle-reinforced copper matrix composites, Mater. Lett.43 (2000), pp. 27427910.1016/S0167-577X(99)00273-6Search in Google Scholar

7 E. G.Celebi, I.Altinsoy, M.Ipek, S.Zeytin, C.Bindal: Effects of SiC particle size on properties of Cu-SiC metal matrix composites, Acta Phys. Polonica A121 (2012), pp. 250254Search in Google Scholar

8 S. K.Mishra, S.Biswas, A.Satapathy: A study on processing, characterization and erosion wear behavior of silicon carbide particle filled ZA-27 metal matrix composites, Mater. Des.55 (2014), pp. 95896510.1016/j.matdes.2013.10.069Search in Google Scholar

9 Y.Şahin: The prediction of wear resistance model for the metal matrix composites, Wear258 (2005), pp. 1717172110.1016/j.wear.2004.11.024Search in Google Scholar

10 Y.Şahin: Optimization of testing parameters on the wear behavior of the metal matrix composite based on the Taguchi method, Mater. Sci. Eng. A408 (2005), pp. 1810.1016/j.msea.2004.11.012Search in Google Scholar

11 U.Soy, F.Cicici, A.Demir: Evaluation of Taguchi method for wear behavior of Al/SiC/B 4 C composites, J. Comp. Maters.46, (7) (2011), pp. 85185910.1177/0021998311410510Search in Google Scholar

12 T.Yildiz, A. K.Gür, S.Aba: Examination of the wear behavior of Cu-Ni/B 4 Cp composite by the Taguchi method, Materials Testing56 (2014), No. 11–12, pp. 1009101410.3139/120.110656Search in Google Scholar

13 M. H.Cho, S.Bahadur, A. K.Pogosian: Friction and wear studies using Taguchi method on polyphenylene sulfide filled with a complex mixture of MoS 2, Al 2 O 3, and other compounds, Wear258 (2005), pp. 1825183510.1016/j.wear.2004.12.017Search in Google Scholar

14 S.Basavarajappa, S.Ellangovan, K. V.Arun: Studies on dry sliding wear behavior of graphite filled glass-epoxy composites, Mater. Des.30 (2009), pp. 2670267510.1016/j.matdes.2008.10.013Search in Google Scholar

15 P. J.Ross: Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments, Parameter and Tolerance Design, 2 nd Ed., McGraw Hill, New York, USA (1989)Search in Google Scholar

16 Y. C.Lin, H. C.Li, S. S.Liou, M. T.Shie: Mechanism of plastic deformation of powder metallurgy metal matrix composites of Cu-Sn/SiC and 6061/SiC under compressive stress, Mater. Sci. Eng. A373 (2004), pp. 36336710.1016/j.msea.2004.02.011Search in Google Scholar

17 Y.Zhan, G.Zhang, Y.Zhuang: Wear transitions in particulate reinforced copper matrix composites, The Japan Inst. of Metals, Mater. Transac.45 (2004), pp. 2332233610.2320/matertrans.45.2332Search in Google Scholar

18 A.Brendel, C.Popescu, C.Leyens, J.Woltersdorf, E.Pippel, H.Bolt: SiC-fibre reinforced copper as heat sink material for fusion applications, J. Nucl. Mater.329–333 (2004), pp. 80480910.1016/j.jnucmat.2004.04.304Search in Google Scholar

19 M.Barmouz, M.Kazem, B.Givi: Fabrication of in situ Cu/SiC composites using multi-pass friction stir processing: Evaluation of microstructural, porosity, mechanical and electrical behavior, Composites A42 (2011), pp. 1445144910.1016/j.compositesa.2011.06.010Search in Google Scholar

20 M.Barmouz, P.Asadi, M. K. B.Givi, M.Taherishargh: Investigation of mechanical properties of Cu/SiCp composite fabricated by FSP: Effect of SiC particles’ size and volume fraction, Mater. Sci. Eng. A528 (2011), pp. 1740174810.1016/j.msea.2010.11.006Search in Google Scholar

21 M.Gupta, M. O.Lai, C. Y.Soo: Effects of type of processing on the micro-structural features and mechanical properties of A1-Cu/SiC metal matrix composites, Mater. Sci. Eng. A210 (1996), pp. 11411910.1016/0921-5093(95)10077-6Search in Google Scholar

22 C.Tekmen, I.Ozdemir, U.Cocen, K.Onel: The mechanical response of Al/Si/Mg/SiCp composite: Influence of porosity, Mater. Sci. Eng. A360 (2003), pp. 36537010.1016/S0921-5093(03)00461-1Search in Google Scholar

23 S. F.Moustafa, Z.Abdel-Hamid, A. M.Abd-Elhay: Copper matrix SiC and Al 2 O 3 particulate composites by powder metallurgy technique, Mater. Lett.53 (2002), pp. 24425010.1016/S0167-577X(01)00485-2Search in Google Scholar

24 V.Rajkovic, A. D.Bozˇic, K.Devecˇerski, S.Bojanic, M. T.Jovanovic: Strength and thermal stability of Cu-Al 2 O 3 composite obtained by internal oxidation, Revista De Metal.46 (2010), pp. 52052510.3989/revmetalmadrid.1024Search in Google Scholar

25 M.Korac, Z.Kamberovic, Z.Andic, M.Filippovic, M.Tasic: Sintered materials based on alumina and copper powders synthesized by a novel method, Sci. Sinter.42 (2010), pp. 819010.5772/21501Search in Google Scholar

26 M.Korac, Z.Kamberovic, M.Tasic, M.Gavrillovski: Nanocomposite powders for new contact materials based on copper and alumina, Chem. Ind. & Chem. Eng. Quart.14 (2008), pp. 21521810.2298/CICEQ0804215KSearch in Google Scholar

27 M.Korac, Ž.Kamberovic, Z.Andic, M.Tasic, A.Vujovic: The analysis of the tribological properties of multiple strengthened of the nanocomposite of the Cu-Al 2 O 3 system, Metalurgija-MJoM17 (2011), pp. 4954Search in Google Scholar

28 F.Shehata, A.Fathy, M.Abdelhameed, S.Moustafa: Preparation and properties of Al 2 O 3 nanoparticle reinforced copper matrix composites by in situ processing, Mater. Des.30 (2009), pp. 2756276210.1016/j.matdes.2008.10.005Search in Google Scholar

29 F.Shehata, M.Abdelhameed, A.Fathy, M.Elmahdy: Preparation and characteristics of Cu-Al 2 O 3 nanocomposite, Open J. Met.1 (2011), pp. 253310.4236/ojmetal.2011.12004Search in Google Scholar

30 D. W.Lee, B. K.Kim: Nanocomposite powders for new contact materials based on copper and alumina, Mater. Lett.58 (2004), pp. 37838310.1016/S0167-577X(03)00505-6Search in Google Scholar

31 P. K.Jena, E. A.Brocchi, M. S.Motta: Identification of a third phase in Cu-Al 2 O 3 nanocomposites prepared by chemical routes, Mater. Sci. Eng. A371 (2004), pp. 727810.1016/S0921-5093(03)00642-7Search in Google Scholar

32 H.Nasiri, K. J.Vahdati, S. M.Zebarjad: One-step fabrication of Cu-Al 2 O 3 nanocomposite via solution combustion synthesis route, J. Alloy. Comd.509 (2011), pp. 5305530810.1016/j.jallcom.2011.01.185Search in Google Scholar

33 S. J.Hwang: Compressive yield strength of the nano-crystalline Cu with Al 2 O 3 dispersed, J. Alloy. Comd.509 (2011), pp. 2355235910.1016/j.jallcom.2010.11.017Search in Google Scholar

34 Y.Wang, S.Lim, J. L.Luo, Z. H.Zu: Tribological and corrosion behavior of Al 2 O 3/polymer nanocomposite coatings, Wear260 (2006), pp. 97698310.1016/j.wear.2005.06.013Search in Google Scholar

35 D. L.Burris, W. G.Sawyer: Improved wear resistance in alumina-PTFE nanocomposites with irregular shaped nanoparticles, Wear260 (2006), pp. 91591810.1016/j.wear.2005.06.009Search in Google Scholar

36 P.Stobrawa, Z. M.Rdzawski, W.Gluchowski, J. D.Domagala: Nanocrystalline copper based microcomposites, J. Achiev. in Mater. and Manufact. Eng.541 (2012), pp. 4955Search in Google Scholar

37 S. C.Tjong, K. C.Lau, Dry sliding wear of TiB 2 particle-reinforced aluminum alloy composite, Mater. Sci. Technol.16 (2000), pp. 9910310.1179/026708300773002717Search in Google Scholar

38 J. P.Tu, N. Y.Wang, Y. Z.Yang, W. X.Qi, F.Liu, X. B.Zhang, H. M.Lu, M. S.Liu: Preparation and properties of TiB 2 nanoparticle reinforced copper matrix composites by in situ processing, Ž. Mater. Lett.52 (2002), pp. 44845510.1016/S0167-577X(01)00442-6Search in Google Scholar

39 K.Venkateswaran, M.Kamaraj, P. K.Rao: Dry sliding wear of a powder metallurgy copper based metal matrix composites reinforced with iron aluminide intermetallic particles, J. Comp. Mater.41 (2007), pp. 1713171910.1177/0021998306069888Search in Google Scholar

40 K.Chu, H.Guo, C.Jia, F.Yin, X.Zhang, X.Liang, H.Chen: Thermal properties of carbon nanotube-copper composites for thermal management applications, Nanosc. Res. Lett.5 (2010), pp. 86887310.1007/s11671-010-9577-2Search in Google Scholar PubMed PubMed Central

41 E.Neubauer, M.Kitzmantel, M.Hulman, P.Angerer: Potential and challenges of metal matrix composites reinforced with carbon nanofibers and carbon nanotubes, Comp. Sci. Technol.70 (2010), pp. 2228223210.1016/j.compscitech.2010.09.003Search in Google Scholar

42 H.Zhang, Z.Zhang, F.Guo, K.Wang, W.Jiang: Enhanced wear properties of hybrid PTFE/cotton fabric composites filled with functionalized multi-walled carbon nanotubes, Maters. Chem. Phys.116 (2009), pp. 18319010.1016/j.matchemphys.2009.03.008Search in Google Scholar

43 V.Medeliene, V.Stankevic, A.Griguceviciene, A.Selskiene, G.Bikulcius: The study of corrosion and wear resistance of copper composite coatings with inclusions of carbon nanomaterials in the copper metal matrix, Mater. Sci. (Medziagotyra)17 (2011), pp. 13213710.5755/j01.ms.17.2.481Search in Google Scholar

44 J. K.Xiao, L.Zhang, K. C.Zhou, X. P.Wang: Microscratch behavior of copper-graphite composites, Tribol. Int.57 (2013), pp. 384110.1016/j.triboint.2012.07.004Search in Google Scholar

45 Y.Zhan, G.Zhang, Y.Zhuang: Wear transitions in particulate reinforced copper matrix composites, Mater. Transac.45 (2004), pp. 2332233810.2320/matertrans.45.2332Search in Google Scholar

46 J.Zhang, A. T.Alpas: Transition between mild and severe wear in aluminum alloys, Acta Mater.45 (1997), pp. 51352810.1016/S1359-6454(96)001917Search in Google Scholar

47 A. K.Gur, Ç.Ozay, A.Orhan, S.Buytoz, U.Çaligülü, N.Yigittürk: Wear properties of Fe-Cr-C and B 4 C powder coating on AISI 316 stainless steel analyzed by the Taguchi method, Materials Testing56 (2014) No. 5, pp. 39339810.3139/120.110578Search in Google Scholar

48 K.Hanada, N.Nakayama, M.Mayuzumi, T.Sano, H.Takeishi: Tribological properties of Al-Si-Cu-Mg alloy-based composite dispersing diamond nanocluster, Diam. Rel. Mater.11 (2002), pp. 74975610.1016/S0925-9635(02)00003-1Search in Google Scholar

49 Y.Şahin: Tribological behavior of the metal matrix and its composite, Mater. Des.28 (2007), pp. 1348135210.1016/j.matdes.2006.01.032Search in Google Scholar

50 R.Kumar, S.Dharmalingam: A study of sliding wear behaviors of Al-7075 alloy and Al-7075 hybrid composite by response surface methodology analysis, Mater. Des.50 (2013), pp. 35135910.1016/j.matdes.2013.02.038Search in Google Scholar

51 S.Basavarajappa, K. V.Arun, J. P.Davim: Effect of filler materials on dry sliding wear behavior of polymer matrix composites – A Taguchi approach, J. of Miner. Mater. Character. Eng.8 (2009), pp. 37939110.4236/jmmce.2009.85034Search in Google Scholar

52 S.Basavarajappa, G.Chandramohan, J. P.Davim: Application of Taguchi techniques to study dry sliding wear behavior of MMCs, Mater. Des.28 (2007), pp. 1393139810.1016/j.matdes.2006.01.006Search in Google Scholar

53 S.Dharmalingam, R. S.Subramanian, K.Vinoth, B.Ananda: Optimization of tribological behavior of aluminum hybrid metal matrix composites using Grey-Taguchi method, ASM International, J. Maters. Eng. Perform.20 (2011), pp. 1457146310.1007/s11665-010-9800-4Search in Google Scholar

54 Y.Şahin: Abrasive wear behaviour of SiCp/2014 Al alloy composites, Tribol. Inter.43 (2010), pp. 93994310.1016/j.wear.2011.05.022Search in Google Scholar

55 K.Friedrich, Z.Zhang, A. K.Schlarb: Effects of various fillers on the sliding wear of polymer composites, J. Comp. Sci. Technol.65 (2005), pp. 2329234310.1016/j.compscitech.2005.05.028Search in Google Scholar

Published Online: 2016-04-22
Published in Print: 2016-05-02

© 2016, Carl Hanser Verlag, München

Downloaded on 25.2.2024 from https://www.degruyter.com/document/doi/10.3139/120.110868/html
Scroll to top button