Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 22, 2016

Multi-response milling process optimization using the Taguchi method coupled to grey relational analysis

Multi-Antwort-Optimierung eines Fräsprozesses mittels des Taguchi-Verfahrens gekoppelt mit einer Grey-Beziehungsanalyse (GRA – Grey Relational Analysis)
  • Subramaniam Shankar , Thangamuthu Mohanraj and Sevagoundanoor Karuppusamy Thangarasu
From the journal Materials Testing

Abstract

An efficient method based on Taguchi's design of experiment coupled with the grey relational analysis was studied, concentrating on the optimization of process parameters over surface roughness, cutting force and tool wear rate in milling of mild steel. This study consists of three stages: experimental work, single response optimization using Taguchi's S/N value and multi-response optimization using grey relational analysis. In the first stage, the experimental work was carried out using Taguchi's design of experiments. The effects of process parameters (spindle speed, feed rate and depth of cut) on surface roughness, cutting force and tool wear rate were investigated using analysis of variance. In the second stage, Taguchi's signal-to-noise ratio was used to optimize the responses. Finally, multi-response optimization was carried out using grey relational analysis. Additionally, the analysis of variance (ANOVA) was applied to determine the most significant factor for the optimal response for milling of mild steel. From the ANOVA table, the most significant factor is the spindle speed. This proposed method can be an effective approach to enhance the multi-response optimization for milling process.

Kurzfassung

Ein effizientes Verfahren basierend auf Taguchi's Design von Experimenten gekoppelt mit der Grey-Beziehungsanalyse wurde in der diesem Beitrag zugrunde liegenden Studie untersucht, in dem sich auf die Optimierung der Prozessparameter Oberflächenrauheit, Schnittkraft und Werkzeugverschleißrate beim Fräsen eines Kohlenstoffstahls konzentriert wurde. Die Studie bestand aus drei Schritten: Experimentelle Arbeiten, eine einfache Antwortoptimierung mittels des Taguchi S/N-Wertes und einer Mulit-Antwort-Optimierung mittels der Grey-Beziehungsanalyse. Im ersten Schritt wurden die experimentellen Versuche mittels des Taguchi-Designs durchgeführt. Die Effekte der Bearbeitungsparameter (Spindelgeschwindigkeit, Vorschubrate und Schnitttiefe) auf die Oberflächenrauheit, die Schnittkraft und die Werkzeugverschleißrate wurden mittels einer Varianzanalyse untersucht. Im zweiten Schritt wurde Taguchi's Signal-Rausch-Abstand verwendet, um die Antworten zu optimieren. Anschließend wurde eine Multi-Antwort-Optimierung mittels der Grey-Beziehungsanalyse vorgenommen. Zusätzlich wurde eine Varianzanalyse (ANOVA) angewandt, um den signifikantesten Einflussfaktor für die optimale Antwort beim Fräsen von Stahl zu bestimmen. Aus der ANOVA-Tabelle ergibt sich, dass der signifikanteste Parameter die Spindelgeschwindigkeit ist. Das vorgeschlagene Verfahren kann einen effektiven Ansatz darstellen, um die Multi-Antwort-Optimierung für den Fräsprozess voranzubringen.


*Correspondence Address, Assoc. Prof. Dr. Subramaniam Shankar, Department of Mechatronics Engineering, Kongu Engineering College, Perundurai, Erode, Tamilnadu 638052, India, E-mail:

Dr. Subramaniam Shankar, born in 1980, is currently working as Associate Professor at Kongu Engineering College in Perundura, Tamilnadu, India. He obtained his PhD degree from the Indian Institute of Technology Madras, India, in 2008. He is specialized in computational mechanics, biomechanics, tribology and condition monitoring.

Thangamuthu Mohanraj, born in 1988, is currently working as Assistant Professor at Kongu Engineering College in Perundura, Tamilnadu, India. He is presently pursuing his PhD degree at Anna University in Chennai, Tamilnadu, India. He is specialized in mechatronics, sensors and signal processing and condition monitoring.

Sevagoundanoor Karuppusamy Thangarasu, born in 1982, is currently working as Assistant Professor at Kongu Engineering College in Perundura, Tamilnadu, India. He is presently pursuing his PhD degree at Anna University in Chennai, Tamilnadu, India. He is specialized in mechatronics, sensors and signal processing and condition monitoring.


References

1 T.Fu, J.Zhao, W.Liu: Multi-objective optimization of cutting parameters in high-speed milling based on grey relational analysis coupled with principal component analysis, Frontiers of Mechanical Engineering7 (2012), No. 4, pp. 44545210.1007/s11465-012-0338-zSearch in Google Scholar

2 Z.Wang, H.Meng, J.Fu: Novel method for evaluating surface roughness by grey dynamic filtering, Measurement43 (2010), No. 1, pp. 788210.1016/j.measurement.2009.06.008Search in Google Scholar

3 P.Vijian, V.Arunachalam: Optimization of squeeze cast parameters of LM6 aluminium alloy for surface roughness using Taguchi method, Journal of Materials Processing Technology180 (2006), No. 1, pp. 16116610.1016/J.Jmatprotec.2006.05.016Search in Google Scholar

4 U.Esme: Taguchi-based grey relation optimization of machining parameters and cutting path strategies in CNC pocket milling operations, Materials Testing56 (2014) No. 9, pp. 74174710.3139/120.110626Search in Google Scholar

5 B. M.Gopalsamy, B.Mondal, S.Ghosh: Optimisation of machining parameters for hard machining: Grey relational theory approach and ANOVA, The International Journal of Advanced Manufacturing Technology45 (2009), No. 11–12, pp. 1068108610.1007/s00170-009-2054-3Search in Google Scholar

6 R. S.Pawade, S. S.Joshi: Multi-objective optimization of surface roughness and cutting forces in high-speed turning of Inconel 718 using Taguchi grey relational analysis (TGRA), The International Journal of Advanced Manufacturing Technology56 (2011), No. 1–4, pp. 476210.1007/s00170-011-3183-zSearch in Google Scholar

7 U.Esme: Surface roughness analysis and optimization for the CNC milling process by the desirability function combined with the response surface methodology, Materials Testing57 (2015), No. 1, pp. 647110.3139/120.110679Search in Google Scholar

8 N.Tosun: Determination of optimum parameters for multi-performance characteristics in drilling by using grey relational analysis, The International Journal of Advanced Manufacturing Technology28 (2006), No. 5–6, pp. 45045510.1007/s00170-004-2386-ySearch in Google Scholar

9 N.Tosun, H.Pihtili: Gray relational analysis of performance characteristics in MQL milling of 7075 Al alloy, The International Journal of Advanced Manufacturing Technology46 (2010), No. 5–8, pp. 50951510.1007/s00170-009-2118-4Search in Google Scholar

10 C.-K.Chang, H.Lu: Design optimization of cutting parameters for side milling operations with multiple performance characteristics, The International Journal of Advanced Manufacturing Technology32 (2007), No. 1–2, pp. 182610.1007/s00170-005-0313-5Search in Google Scholar

11 H.Lu, C.Chang, N.Hwang, C.Chung: Grey relational analysis coupled with principal component analysis for optimization design of the cutting parameters in high-speed end milling, Journal of Materials Processing Technology209 (2009), No. 8, pp. 3808381710.1016/j.jmatprotec.2008.08.030Search in Google Scholar

12 J.Kopac, P.Krajnik: Robust design of flank milling parameters based on Grey-Taguchi method, Journal of Materials Processing Technology191 (2007), No. 1, pp. 40040310.1016/j.jmatprotec.2007.03.051Search in Google Scholar

13 C.Lin: Use of the Taguchi method and grey relational analysis to optimize turning operations with multiple performance characteristics, Materials and manufacturing processes19 (2004), No. 2, pp. 20922010.1081/amp-120029852Search in Google Scholar

14 C.-J.Tzeng, Y.-H.Lin, Y.-K.Yang, M.-C.Jeng: Optimization of turning operations with multiple performance characteristics using the Taguchi method and grey relational analysis, Journal of Materials Processing Technology209 (2009), No. 6, pp. 2753275910.1016/j.jmatprotec.2008.06.046Search in Google Scholar

15 C.Tsao: Grey-Taguchi method to optimize the milling parameters of aluminum alloy, The International Journal of Advanced Manufacturing Technology40 (2009), No. 1–2, pp. 414810.1007/s00170-007-1314-3Search in Google Scholar

16 A.Hamdan, A. A.Sarhan, M.Hamdi: An optimization method of the machining parameters in high-speed machining of stainless steel using coated carbide tool for best surface finish, The International Journal of Advanced Manufacturing Technology58 (2012), No. 1–4, pp. 819110.1007/s00170-011-3392-5Search in Google Scholar

17 E.Kuram, B.Ozcelik: Multi-objective optimization using Taguchi based grey relational analysis for micro-milling of Al 7075 material with ball nose end mill, Measurement46 (2013), No. 6, pp. 1849186410.1016/j.measurement.2013.02.002Search in Google Scholar

18 J.Ghani, I.Choudhury, H.Hassan: Application of Taguchi method in the optimization of end milling parameters, Journal of Materials Processing Technology145 (2004), No. 1, pp. 849210.1016/s0924-0136(03)00865-3Search in Google Scholar

19 O.Güven: Application of the Taguchi method for parameter optimization of the surface grinding process, Materials Testing57 (2015), No. 1, pp. 434810.3139/120.110674Search in Google Scholar

20 K. V. M. K.Raju, G. R.Janardhana, P. N.Kumar, V. D. P.Rao: Optimization of cutting conditions for surface roughness in CNC end milling, International Journal of Precision Engineering and Manufacturing12 (2011), No. 3, pp. 38339110.1007/s12541-011-0050-7Search in Google Scholar

21 J.Paro, H.Hänninen, V.Kauppinen: Tool wear and machinability of HIPed P/M and conventional cast duplex stainless steels, Wear249 (2001), No. 3, pp. 27928410.1016/s0043-1648(01)00570-1Search in Google Scholar

22 N.Tosun, L.Ozler: Optimisation for hot turning operations with multiple performance characteristics, The International Journal of Advanced Manufacturing Technology23 (2004), No. 11–12, pp. 77778210.1007/s00170-003-1672-4Search in Google Scholar

23 M.Kious, A.Ouahabi, M.Boudraa, R.Serra, A.Cheknane: Detection process approach of tool wear in high speed milling, Measurement43 (2010), No. 10, pp. 1439144610.1016/j.measurement.2010.08.014Search in Google Scholar

24 M.Martellotti: An analysis of the milling process, Trans. ASME63 (1941), No. 2. pp. 67770010.1115/1.4019606Search in Google Scholar

25 J.-L.Deng: Introduction to grey system theory, The Journal of Grey System1 (1989), No. 1, pp. 124Search in Google Scholar

Published Online: 2016-04-22
Published in Print: 2016-05-02

© 2016, Carl Hanser Verlag, München

Downloaded on 11.12.2023 from https://www.degruyter.com/document/doi/10.3139/120.110869/html
Scroll to top button