Skip to content
Accessible Unlicensed Requires Authentication Published by De Gruyter April 22, 2016

Turbine blade wear and damage – An overview of advanced characterization techniques

Verschleiß und Schädigung von Turbinenschaufeln – Ein Überblick innovativer Charakterisierungstechniken
Jochen Schlobohm, Oliver Bruchwald, Wojciech Frackowiak, Yinan Li, Markus Kästner, Andreas Pösch, Wilfried Reimche, Eduard Reithmeier and Hans Jürgen Maier
From the journal Materials Testing

Abstract

This paper gives an overview of four measurement techniques that allow to extensively characterize the status of a worn turbine blade. In addition to the measurement of geometry and surface properties, the condition of the two protective coatings needs to be monitored. Fringe projection was used to detect and quantify geometric variances. The technique was improved using newly developed algorithms like inverse fringe projection. A Michelson interferometer was employed to further analyze areas with geometric defects and characterize the surface morphology of the blade. Pulsed high frequency induction thermography enabled the scanning of the blade for small cracks at or close to the surface. High frequency eddy current testing was used to determine the protective layers status and their thickness.

Kurzfassung

Diese Arbeit gibt einen Überblick über vier unterschiedliche Messsysteme, mit denen der Zustand einer Turbinenschaufel detailliert charakterisiert werden kann. Hierbei werden sowohl die Geometrie und die Oberflächenstruktur erfasst, als auch der Zustand der Schutzschichten bewertet. Für die quantitative Darstellung der makroskopischen Geometrie wird in dieser Arbeit die Streifenprojektion eingesetzt. Das Verfahren wurde um Algorithmen zur inversen Streifenprojektion erweitert, die eine Messung mit nur einer Aufnahme ermöglicht. Mittels eines Michelson-Interferometers können Fehlerstellen genauer analysiert und die Oberflächenstruktur detaillierter charakterisiert werden. Mit der gepulsten Hochfrequenz-Induktions-Thermographie kann die Turbinenschaufel auf feine Risse in und nahe unterhalb der Oberfläche untersucht werden. Der Zustand und die Dicke der keramischen und metallischen Schutzschichten lassen sich abschließend mit der Hochfrequenz-Wirbelstromtechnik erfassen. Die Kombination der vier Messverfahren ermöglicht somit eine schnelle Charakterisierung der wichtigsten Eigenschaften betriebsbeanspruchter Turbinenschaufeln.


*Correspondence Address, M.Sc. Jochen Schlobohm, Institute of Measurement and Automatic Control, Leibniz Universität Hannover, Nienburger Str. 17, 30167 Hannover, Germany, E-mail:

Jochen Schlobohm, born in 1985, received his Master degree in Computer Science from Leibniz University, Hannover, Germany in 2013 and is currently a PhD student at the Institut für Mess- und Regelungstechnik (Institute of Measurement and Automatic Control) of that same unviersity.

Oliver Bruchwald, born in 1982, received his degree in Mechanical Engineering from Leibniz University in Hannover, Germany in 2009 and is currently a PhD student at the Institut für Werkstoffkunde (Material Science) of the same university.

Wojciech Frackowiak, born in 1979, received his Master degree in Mechanical Engineering from the Leibniz University, Hannover, Germany in 2009 and is currently a PhD student at the Institut für Werkstoffkunde (Materials Science) in Hannover.

Yinan Li, born in 1984, received an MSc degree in Engineering Computer Sciences from the University of Paderborn, Germany and is currently a PhD student at the Institut für Mess- und Regelungstechnik (Institute of Measurement and Automatic Control), Leibniz University in Hannover, Germany.

Markus Kästner received his degree in Physics from the Leibniz University, Hannover, Germany in 2003. Since 2004, he worked as a research fellow at the Institut für Mess- und Regelungstechnik (Institute of Measurement and Automatic Control) of the Leibniz University Hannover, where he received his PhD in 2008. In the same year, he became the Head of the work group Production Metrology. His main fields of work are production metrology, optical metrology and coordinate metrology.

Andreas Pösch received his diploma in Mechatronics from Friedrich-Alexander University of Erlangen-Nuremberg, Germany in 2009 before starting as an engineer at the Fraunhofer IIS. After finishing his PhD in 2014 at the Leibniz University in Hannover, Germany, he became Head of the research group for industrial and medical imaging at the Institut für Mess- und Regelungstechnik (Institute of Measurement and Automatic Control), Leibniz University, Hannover.

Wilfried Reimche, born in 1949, received his PhD in Mechanical Engineering from the Leibniz University Hannover, Germany in 1985. In 1986 he was promoted to academic director at the Institute of nuclear engineering and non-destructive testing. Since 2000 he leads the non-destructive testing department at the Institut für Werkstoffkunde (Materials Science) in Hannover.

Eduard Reithmeier, born in 1957, received his PhD in Engineering from the Technical University of Munich, Germany in 1989. In 1995, after working several years for companies and research institutes, he became full Professor at the Leibniz University Hannover, Germany, and is now Director of the Institut für Mess- und Regelungstechnik (Institute of Measurement and Automatic Control) at that unviersity.

Hans Jürgen Maier, born in 1960, received his PhD in Materials Science from the Friedrich-Alexander University of Erlangen-Nuremberg, Germany in 1990. Following various post-doc positions, he was appointed Chair Professor of the University of Paderborn, Germany in 1999. Since 2012, he is Professor and Director of the Institut für Werkstoffkunde (Materials Science) at Leibniz Universität, Hannover, Germany.


References

1 M.Kästner: Optische Geometrieprüfung präzisionsgeschmiedeter Hochleistungsbauteile, PhD thesis (2008), Institute of Measurement and Automatic Control, Leibniz Universität Hannover, ISBN: 978-3832294434Search in Google Scholar

2 T.Peng: Algorithms and Models for 3-D Shape Measurement Using Digital Fringe Projections, PhD thesis (2006) University of Maryland, USASearch in Google Scholar

3 A. V.Oppenheim, R. W.Schafer: Zeitdiskrete Signalverarbeitung, Oldenbourg, Munich, Germany (2005) 10.1515/9783486792966-011Search in Google Scholar

4 B.Holme, O.Lunder: Characterisation of pitting corrosion by white light interferometry, Corrosion Science49 (2007) No. 2, pp. 39140110.1016/j.corsci.2006.04.022Search in Google Scholar

5 R. R.Vallance, C. J.Morgan, S. M.Shreve, E. R.Marsh: Micro-tool characterization using scanning white light interferometry, Journal of Micromechanics and Microengineering14 (2004), No. 8, pp. 1234124310.1088/0960-1317/14/8/017Search in Google Scholar

6 A.Köhler: Ein neues Beleuchtungsverfahren für mikrophotographische Zwecke, Zeitschrift für wissenschaftliche Mikroskopie und für mikroskopische Technik10 (1893), pp. 433440Search in Google Scholar

7 D. A.Zweig, R. E.Hufnagel: Hilbert Transform Algorithm for Fringe-Pattern Analysis, San Dieg-DL Tentative, International Society for Optics and Photonics (1990) 10.1117/12.22815Search in Google Scholar

8 A. V.Oppenheim, R. W.Schafer, J. R.Buck: Discrete-Time Signal Processing, Vol. 2, Englewood Cliffs, Prentice-Hall, UK (1989)Search in Google Scholar

9 M.Krauß, W.Frackowiak, A.Pösch, M.Kästner, E.Reithmeier, H. J.Maier: Assessment of used turbine blades on and beneath the surface for product regeneration; Generation of a damage model based on reflection, geometry measurement and thermography, Proc. Lasers and Electro-Optics Europe CLEO EUROPE/IQEC 2013, Munich, Germany 10.1109/CLEOE-IQEC.2013.6801205Search in Google Scholar

10 M.Goldammer, H.Mooshofer, M.Rothenfusser, J.Bass, J.Vrana, D. O.Thompson, D. E.Chimenti: Automated induction thermography of generator components, Proc. of the Conf. AIP1211, 451 (2010), Kingston (Rhode Island), USA, pp. 45145710.1063/1.3362428.Search in Google Scholar

11 W.Reimche, M.Bernard, S.Bombosch, C.Scheer, Fr.-W.Bach: Nachweis von Anrissen in der Randzone von Hochleistungsbauteilen mit Wirbelstromtechnik und induktiv angeregter Thermographie, HTM – Journal of Heat Treatment and Materials63 (2008), No. 5, pp. 28429710.3139/105.100469Search in Google Scholar

12 H.Mooshofer, M.Goldammer, M.Rothenfusser, J.Bass, E.Lombardo, J.Vrana: Induktionsthermografie zur automatischen Prüfung von Generator-komponenten, DGZfP Jahrestagung 2009, DGZfP Berichtsband BB 115, 10.13140/2.1.3357.5365Search in Google Scholar

13 W.Reimche, O.Bruchwald, W.Frackowiak, Fr.-W.Bach, H. J.Maier: Non-destructive determination of local damage and material condition in high-performance components, HTM – Journal of Heat Treatment and Materials68 (2013), No. 2, pp. 596710.3139/105.110176Search in Google Scholar

14 M.Bernard, C.Scheer, V.Böhm, W.Reimche, Fr.-W.Bach: New developments in non-destructive testing for quality assurance in component manufacturing, Steel Research International80 (2009), No. 12, pp. 91692810.2374/SRI09SP144Search in Google Scholar

15 G.Mroz, W.Reimche, W.Frackowiak, O.Bruchwald, H. J.Maier: Setting discrete yield-stress sensors for recording early component loading using eddy-current array technology and induction thermography, Procedia Technology15 (2014), pp. 48449310.1016/j.protcy.2014.09.008Search in Google Scholar

16 W.Frackowiak, O.Bruchwald, W.Reimche, Fr.-W.Bach, H. J.Maier: High-frequency eddy-current and induction thermography inspection techniques for turbine components, Electromagnetic Nondestructive Evaluation17 (2014), pp. 22623310.3233/978-1-61499-407-7-226Search in Google Scholar

Published Online: 2016-04-22
Published in Print: 2016-05-02

© 2016, Carl Hanser Verlag, München