Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 23, 2016

Particularities of testing structured sheet metals in 3-point bending tests

Besonderheiten der Prüfung von strukturierten Blechen im 3-Punkt-Biegeversuch. Feinbleche aus dem Tiefziehstahl DC04 werden sehr häufig bei der Produktion von Karosserie- und Gehäuseteilen eingesetzt
  • Fedor Kazak , Leander Schleuß , Ralf Ossenbrink , Vesselin Michailov and Sabine Weiß
From the journal Materials Testing

Abstract

Thin sheet metals from deep drawing steel DC04 are very often used in the production of car body and case parts. Quality improvement of sheet metal components by new constructive solutions (structuring) as well as adapted joining technology is going on. Structured sheet metals differ from each other by their high bending stiffness. At the same time, they show certain anisotropy due to the structure. Therefore a typical testing method of structured semi-finished parts (single sheet metals, sandwiches) is the bending test. The literature review revealed that in many studies no special demands on tests of structured materials were made. This concerns particularly the structure arrangement, structure direction and structure location of the specimen relative to the mandrel position during bending tests, i. e., the direction of the fixed load relative to the structure. The aim of this study was to determine the influence of the test specification on flexural behavior. In the present paper, honeycomb-structured sheet metals were examined using 3-point bending tests. Bending stiffness and lightweight potential were calculated with respect to the location of load application and compared for different structure arrangements, directions and locations. The influence of the anisotropy on flexural behavior of the honeycomb-patterned sheet metals was moderate.

Kurzfassung

Es wird versucht mit „altem” Werkstoff und verbesserter konstruktiver Lösung (Strukturierung) sowie mit angepasster Fügetechnik die Eigenschaften der Bleche zu verbessern. Das meistverbreitetste Prüfverfahren von strukturiertem Halbzeug (einzelne Bleche, Sandwiches) ist der Biegeversuch. Strukturierte Bleche zeichnen sich durch ihre hohe Biegesteifigkeit aus. Sie zeigen aber gleichzeitig strukturbedingt eine gewisse Anisotropie. Die Literaturrecherche hat gezeigt, dass bei vielen Untersuchungen keine speziellen Anforderungen an die Prüfungen von strukturierten Werkstoffen gestellt wurden. Das betrifft besonderes Strukturanordnung, -richtung und -lage der Probe gegenüber dem Biegedorn bei Biegeversuchen, d. h. die Richtung der aufgebrachten Kraft gegenüber der Struktur. Das Ziel der diesem Beitrag zugrunde liegenden Forschungsarbeiten war es festzustellen, welchen Einfluss die Prüfbedingungen auf das Biegeverhalten ausüben. Hierzu wurden wabenstrukturierte Bleche im 3-Punkt-Biegeversuch untersucht. Biegesteifigkeit und Leichtbaupotenzial wurden in Abhängigkeit vom Ort der Aufbringung der Belastung berechnet und für verschiedene Strukturanordnungen, -richtungen und -lagen verglichen. Der Einfluss der Anisotropie auf das Biegeverhalten der wabenstrukturierten Bleche wurde dabei als mäßig bezeichnet.


*Correspondence Address, Dr.-Ing. Fedor Kazak, Marchwitzastraße 60, 12681 Berlin
** Prof. Dr.-Ing. Sabine Weiß, BTU Cottbus-Senftenberg, Lehrstuhl Metallkunde und Werkstofftechnik, Konrad-Wachsmann-Allee 17, 03046 Cottbus. E-mail: ,

Dr.-Ing. Fedor Kazak, born in 1975, studied „Physical Metallurgy and Thermal Treatment of Metals” at Volgograd State Technical University, Russia. He finished his Dr.-Ing. in the field of Materials Science and Engineering at Brandenburg Technical University of Cottbus-Senftenberg, Germany in 2015. His professional experience includes analytical and mechanical characterizations of metal-based materials. Currently, he is Executive Emloyee in quality assurance/working process at HWL Löttechnik GmbH, Berlin, Germany.

Leander Schleuß, born in 1977, graduated from the Technical University of Brandenburg, Cottbus, Germany and received his diploma in Mechanical Engineering in 2008. At present, he is an academic staff at the Chair of Joining and Welding Technology at the Brandenburg Technical University of Cottbus-Senftenberg, Germany. His research interests focus on cutting and joining of structured and thin sheet metals using different processes such as: arc and resistance welding, adhesive bonding, brazing, clinching. He also contributes to the development of standards and instruction sheets.

Dr.-Ing. Ralf Ossenbrink, born in 1969, studied Mechanical Engineering at Technical University of Braunschweig, Germany. He worked as a research associate at Technical University of Braunschweig, Germany, and Fraunhofer Institute for Mechanics of Materials, Freiburg, Germany. Since 2004, he is group leader at the Department Joining and Welding of Brandenburg University of Technology, Cottbus, Germany, where he also received his Doctoral Degree. His areas of expertise are the numerical simulation of welding processes and materials testing.

Prof. Dr.-Ing. habil. Vesselin Michailov, born in 1953, graduated with specialization in physical metallurgy and welding technology in 1979, defended his PhD thesis in the field of technical sciences in 1983 and obtained his DSc Degree in Technical Sciences at the Leningrad Polytechnic Institute, Russia, in 1997. He habilitated at the Technical University of Braunschweig, Germany in 2001. At present, he is Head of the Joining and Welding Department of Brandenburg University of Technology Cottbus-Senftenberg, Germany, Director of the Lightweight Materials Centre “Panta Rhei”, Cottbus, Germany and leading scientist of the Laboratory of Lightweight Materials and Structures at Peter the Great St. Petersburg Polytechnic University, Russia. He has 33 years of experience in the fields of industry, science and education and is author or co-author of over 150 scientific articles, books and patents.

Prof. Dr.-Ing. Sabine Weiß, born in 1964, received her Dipl.-Ing. in Physical Metallurgy and Materials Science from Technical University (RWTH) of Aachen, Germany in 1990. She completed her Dr.-Ing. in Materials Science and Engineering at the same university in 1997. As Head of the fatigue group in the Institute of Product Engineering, Chair for Materials Science of University Duisburg-Essen, Germany, she completed her Priv.-Doz. in Materials Science and Engineering in 2007. Her research was in the fields of texture analysis, grain growth, fatigue and microstructure analysis. Currently, she is Professor for Materials Science at Brandenburg Technical University of Cottbus-Senftenberg, Germany and Head of the Chair of Physical Metallurgy and Materials Science. Her research lies within the fields of fatigue, erosion wear, mechanical behavior of structured sheet metals and corrosion of technical metallic materials.


References

1 M.Hoppe: Umformverhalten strukturierter Feinbleche, Dissertation Thesis, TU Cottbus, Germany (2002)Search in Google Scholar

2 F.Mirtsch, N.Weinert, M.Pech, G.Seliger: Vault structures enabling sustainable products, Proc. of 13th CIRP International Conference on Life Cycle Engineering, Leuven, Belgium (2006), pp. 629633Search in Google Scholar

3 S.Simon: Werkstoffgerechtes Konstruieren und Gestalten mit metallischen Werkstoffen, Habilitation Thesis, TU Cottbus, Germany (2007)Search in Google Scholar

4 V.Malikov, R.Ossenbrink, B.Viehweger, V.Michailov: Flat hemming of structured sheet metals, Proc. of the International Conference on Innovative Technologies IN-TECH 2011, Bratislava, Slowakia (2011), PP. 763767Search in Google Scholar

5 V.Malikov, R.Ossenbrink, B.Viehweger, V.Michailov: Analytical and numerical calculation of the force and power requirements for air bending of structured sheet metals, Key Engineering Materials473 (2011), pp. 60260910.4028/www.scientific.net/KEM.473.602Search in Google Scholar

6 V.Malikov, R.Ossenbrink, B.Viehweger, V.Michailov: Investigation of air bending of structured sheet metals by multistage FE simulation, International Journal of Advanced Manufacturing Technology63 (2012), pp. 44945510.1007/s00170-012-3927-4Search in Google Scholar

7 S.Mütze: Beurteilung des Einsatzes von teilstrukturierten Stahlfeinblechen im Kfz-Karosseriebau zur Gewichtsreduzierung, Schriftenreihe der Forschungsvereinigung Automobiltechnik e.V. 171, 82, Frankfurt a. M., Germany (2002)Search in Google Scholar

8 T.Schriever, F.Herrmann, J.Maiwald: Festigkeits- und Steifigkeitsverhalten von dünnen Blechen mit Sicken, Schriftenreihe der Forschungsvereinigung Automobiltechnik e.V. 106, 320, Frankfurt a. M., Germany (1994)Search in Google Scholar

9 S.Fritzsche, R.Ossenbrink, V.Michailov: Experimental characterisation of structured sheet metals, Key Engineering Materials473 (2011), pp. 40441110.4028/www.scientific.net/KEM.473.404Search in Google Scholar

10 I.Sasse, L.Schleuß, R.Ossenbrink, V.Michailov: Cutting of structured sheet metals with high power fiber laser, Proc. of the International Conference on Innovative Technologies IN-TECH 2011, Bratislava, Slowakia (2011), pp. 485488Search in Google Scholar

11 DIN 53121: Prüfung von Papier, Karton und Pappe – Bestimmung der Biegesteifigkeit nach der Balkenmethode, Beuth Verlag, Berlin, Germany (2008)Search in Google Scholar

12 A.Sterzing: Bewertung von Leichtbaupotential und Einsatzfähigkeit wölbstrukturierter Feinbleche, Dissertation Thesis, TU Chemnitz, Germany (2005)Search in Google Scholar

13 L.Schleuß, R.Ossenbrink, V.Michailov: Widerstandspunktschweißen strukturierter Bleche – Schweißbereiche, Prüfung, Anwendung, 12th Colloquium – Widerstandsschweißen und alternative Verfahren, Halle (Saale), Germany (2010)Search in Google Scholar

Published Online: 2016-05-23
Published in Print: 2016-06-01

© 2016, Carl Hanser Verlag, München

Downloaded on 1.12.2023 from https://www.degruyter.com/document/doi/10.3139/120.110883/html
Scroll to top button