Abstract
Stimulated material-environment interactions inside and around flowlines of deep or ultra deep wells during oil and gas exploration, and fabrication economy of pipelines have been the major challenges facing the oil and gas industries. Presumably, an extensive focus on high integrity, performance and material economy of flowlines have realistically made supermartensitic stainless steels (SMSS) efficient and effective material choices for fabricating onshore and offshore pipelines. Supermartensitic stainless steels exhibit high strength, good low temperature toughness, sufficient corrosion resistance in sweet and mildly sour environments, and good quality weldability with both conventional welding processes and modern welding methods such as laser beam welding, electron beam welding and hybrid welding approaches. In terms of economy, supermartensitic stainless steels are cheaper and they are major replacements for more expensive duplex stainless steels required for tubing applications in the oil and gas industry. However, weld areas of SMSS pipes are exposed to sulphide stress cracking (SSC), so intergranular stress corrosion cracking (IGSCC) or stress corrosion cracking can occur. In order to circumvent this risk of cracking, a post-weld heat treatment (PWHT) for 5 minutes at about 650 °C is recommended. This paper provides detailed literature perusal on supermartensitic stainless steels, their weldability and corrosion behaviors. It also highlights a major research area that has not been thoroughly expounded in literature; fatigue loading behaviors of welded SMSS under different corrosive environments have not been thoroughly detailed in literature.
Kurzfassung
Stimulierte Material-Umwelt-Interaktionen in und um Flowlines von tiefen oder extrem tiefen Bohrungen während der Öl- und Gaserschließung und die Wirtschaftlichkeit in der Pipelinefertigung stellen die wichtigsten Herausforderungen für die Öl- und Gasindustrie dar. Ein umfassender Fokus auf eine hohe Integrität, Leistung und Materialwirtschaft von Flowlines haben vermutlich dazu geführt, die supermartensitischen rostfreien Stähle (SMSS) als ein effizientes und effektives Material für die Herstellung von On- und Offshore-Pipelines zu wählen. Supermartensitische rostfreie Stähle weisen eine hohe Festigkeit, gute Tieftemperaturzähigkeit, eine ausreichende Korrosionsbeständigkeit in Trinkwasser und leicht saurer Umgebung und eine gute Schweißbarkeit, sowohl mit konventionellen Schweißverfahren, als auch mit modernen Schweißverfahren, wie Laserstrahlschweißen, Elektronenstrahlschweißen und Hybridschweißmethoden auf. In Bezug auf die Wirtschaftlichkeit sind supermartensitischen rostfreie Stähle kostengünstiger und ein wichtiger Ersatz für teurere Duplex-Stähle für Rohranwendungen in der Öl- und Gasindustrie. Werden allerdings geschweißte Bereiche von SMSS-Rohren einer Risskorrosion mit H2S ausgesetzt (SSC), kann interkristalline Spannungsrisskorrosion (IGSCC) oder Spannungskorrosion entstehen. Um dieses Risiko der Rissbildung zu umgehen, wird eine Wärmenachbehandlung (PWHT) für 5 Minuten bei etwa 650 °C empfohlen. Die vorliegende Arbeit enthält eine detaillierte Literaturübersicht zu supermartensitischen rostfreien Stählen, deren Schweißbarkeit und Korrosionsverhalten. Es unterstreicht auch ein wichtiges Forschungsgebiet, das in der Literatur noch nicht gründlich dargelegt worden ist: das Dauerschwingbeanspruchungsverhalten von geschweißten SMSS unter verschiedenen korrosiven Umgebungen.
References
1 L.Smith, M.Celant: Martensitic stainless steels in context, Supermartensitic Stainless Steels 2002, Brussels, Belgium, 3–4 October 2002, pp. 14–20Search in Google Scholar
2 H.van der Winden, P.Toussaint, L.Coudreuse: Past, Present and Future of Weldable Super martensitic Alloys, www.stainless-steel-world-net/supermartensitic/conference.asp., 2002Search in Google Scholar
3 D.Zou, R.Liu, J.Li, W.Zhang, D.Wang, Y.Han: Corrosion resistance and semiconducting properties of passive films formed on 00Cr13Ni5Mo2 supermartensitic stainless steel in Cl− environment, Journal of Iron and Steel Research International, 21 (6) (2014), pp. 630–63610.1016/s1006-706x(14)60098-4Search in Google Scholar
4 E.Ladanova: Microstructural Transformations and Carbide Precipitation in the HAZ of Supermartensitic Stainless Steels, PhD Thesis, NTNU Trondheim, Norwegian University of Science and Technology, Norway (2003)Search in Google Scholar
5 P.Toussaint, B.Hoerner, V.Ligier, B.Bennefois, L.Coudresse: Latest evolutions in material properties assessment of supermartensitic stainless steels as considered by a material fabricator, Stainless Steel World Vol. 16 (2004), pp. 19–26Search in Google Scholar
6 TWI: Supermartensitic Stainless Steels, URL: http://www.twi-global.com/accessed 17th September, 2015Search in Google Scholar
7 L.Karlsson, S.Rigdal, J.van den Broek, M.Goldschmitz, R.Pedersen: Welding of supermartensitic stainless steels – Recent developments and application experience, Svetsaren No. 2 (2002), pp. 14–20Search in Google Scholar
8 J.van den Broek, M.Goldschmitz, L.Karlsson, S.Rigdal: Efficient welding of supermartensitic pipes with matching metal cored wires, Svetsaren No. 2–3, (2001), pp. 42–46Search in Google Scholar
9 L.Karlsson, S.Rigdal, W.Bruins, M.Goldschmitz: Development of matching composition stainless steel welding consumables, Svetsaren No. 3 (1999), pp. 3–7Search in Google Scholar
10 R.Hoffmann, T.Schüller, B.Mühe, I.Rommerskirchen, H.Butting: Experiences with supermartensitic stainless steels in the pipe production based on research work and first commercial orders, Supermartensitic Stainless Steels 2002, Brussels, Belgium, 3–4 October 2002, pp. 129–134Search in Google Scholar
11 E.Taban, E.Kaluc: Petrol ve doğalgaz boru hatlarının yapımında kullanılan süpermartenzitik Paslanmaz Çelikler ve Kaynağı, Kaynak Teknolojisi IV. Ulusal Kongresi, 24–25 Ekim 2003, Kocaeli, Turkey, pp. 257–267Search in Google Scholar
12 P. E.Kvaale, S.Olsen: Experience with supermartensitic stainless steels in flowline applications, Stainless Steel World Conference 99, Brussels, Belgium, May 1999, pp. 19–26Search in Google Scholar
13 A. W.Marshall, J. C. M.Farrar: Welding of ferritic and martensitic 11-14%Cr steels, Doc. IX-1975-00, IXH-494-2000, Welding in the World, 2001, Vol. 45, no. 5–6, pp. 32–55Search in Google Scholar
14 B.Bennefois, L.Coudreuse, P.Toussaint, J. J.Dufrane: Development in GMAW of new martensitic stainless steels, Supermartensitic Stainless Steel 2002, Brussels, Belgium, 3–4 October 2002, pp. 62–67Search in Google Scholar
15 R.Sölch, R.Hoffmann: Laser beam welding for continuous production of longitudinally welded pipes in chromium nickel steels, Stainless Steel World, November 2003, pp. 19–23Search in Google Scholar
16 I.Rommerskirchen, R.Hoffmann, T.Schüller, B.Mühe: Supermartensitic steels in pipe production – A tightrope walk, Stainless Steel World, June 2003, pp. 56–61Search in Google Scholar
17 C.Walz, I.Stiebe-Springer, M.El Rayes, T.Seefeld, G.Sepold: Hybrid welding of steel for offshore applications, 11th International Offshore and Polar Engineering Conference, Stavanger, Norway, 17–22 June 2001, Proceedings of International Offshore and Polar Engineering Conference, V. 4, 2001, pp. 263–266Search in Google Scholar
18 A.Turnbull, A.Griffiths: Corrosion and cracking of weldable 13Cr martensitic stainless steels – A review, Corrosion Engineering, Science and Technology, NPL Report Matc(A)108, May 2002, Vol. 38, Issue 1, pp. 21–5010.1179/147842203225001432Search in Google Scholar
19 M.Stroe, V.Ligier, P.Toussaint, J. J.Dufrane, A.Pourbaix: Moderate cathodic protection and hydrogen embattlement of supermartensitic stainless steel flowlines, Supermartensitic Stainless Steel 2002, Brussels, Belgium, 3–4 October 2002, pp. 194–198Search in Google Scholar
20 E.Taban, E.Kaluc: Süpermartenzitik Paslanmaz Çelikler, Kaynak Kabiliyetleri ve Korozyon Davranışları, 10. Denizli Malzeme Sempozyumu Bildiriler Kitabı, 14–16 April 2004, Pamukkale Üniversitesi Mühendislik Fakültesi Denizli, Turkey, pp. 989–1000Search in Google Scholar
21 A.Gregori, P.Woollin: Analysis of in-service failures in girth- welded supermartensitic pipes, Stainless Steel World, December 2003, pp. 17–24Search in Google Scholar
22 E.Ladanova, J. K.Solberg: TEM investigation of precipitation reactions in coarse grained HAZ in two 13% Cr supermartensitic stainless steels, Supermartensitic Stainless Steels 2002, Brussels, Belgium, 3–4 October 2002, pp. 205–209Search in Google Scholar
23 T.Rogne, M.Svenning: Intergranular corrosion of supermartensitic stainless steel – A high temperature mechanism, Supermartensitic Stainless Steel 2002, Brussels, Belgium, 3–4 October 2002, pp. 178–184Search in Google Scholar
24 D. T.Llewellyn, R. C.Hudd: Steels – Metallurgy and Applications, 3rd Ed., Butterworth-Heinemann, in Woburn, MA, UK (2000), ISBN 0 7506 3757 9, pp. 291–37810.1016/b978-075063757-2/50004-4Search in Google Scholar
25 D.Ye, J.Li, W.Jiang, J.Su, K.Zhao: Effect of Cu addition on microstructure and mechanical properties of 15%Cr supermartensitic stainless steel, Materials and Design41 (2012), pp. 16–2210.1016/j.matdes.2012.04.036Search in Google Scholar
26 L.Coudreuse, J. P.Audouard, P.Soulignac, J. J.Dufrane, P.Toussaint: Corrosion resistant alloys for oil and gas environments: From martensitic stainless steel to Ni base alloys, EUROCORR 2001, Riva del Garda, Italy, Sept. 30-Oct. 04, Cd-romSearch in Google Scholar
27 Welding Handbook – Materials and Applications – Part 2, Vol. 4, 8th Ed., AWS, Ohio, USA (1998)Search in Google Scholar
28 R.Honeycombe, H. K. D. H.Bhadeshia: Steels – Microstructure and Properties, 2nd Ed., Butterworth-Heinemann, Burlington, MA, UK (1995)Search in Google Scholar
29 E.Folkhard: Welding Metallurgy of Stainless Steels, ((??edition??)), Springer-Verlag, Wien, Austria (1988)10.1007/978-3-7091-8965-8Search in Google Scholar
30 M. D.Pereda, C. A.Gervasi, C. L.Llorente, P. D.Bilmes: Microelectrochemical corrosion study of supermartensitic welds in chloride-containing media, Corrosion Science53 (2011), pp. 3934–394110.1016/j.corsci.2011.07.040Search in Google Scholar
31 V.Olden, C.Thaulow, R.Johnsen: Modelling of hydrogen diffusion and hydrogen induced cracking in supermartensitic and duplex stainless steels, Materials and Design29 (2008), pp. 1934–194810.1016/j.matdes.2008.04.026Search in Google Scholar
32 S.Bond: Corrosion, Welds & Pipelines, published in ‘Anti-Corrosion Methods & Materials’, No. 2 (1999), URL: http://www.twi-global.com/technical-knowledge/published-papers/twi-corrosion-welds-and-pipelines-march-1999/accessed on 14th September, 2015Search in Google Scholar
33 T. J.Mesquita, E.Chauveau, M.Mantel, N.Bouvier, D.Koschel: Corrosion and metallurgical investigation of two supermartensitic stainless steels for oil and gas environments, Corrosion Science81 (2014), pp. 152–16110.1016/j.corsci.2013.12.015Search in Google Scholar
34 J.Enerhaug, U. M.Steinsmo, Ø.Grong, L. R.Hellevik: Dissolution and repassivation kinetics of a 12.3Cr-2.6Mo-6.5Ni supermartensitic stainless steel – A comparative study, Journal of the Electrochemical Society149 (6), 2002, pp. B256–B26410.1149/1.1474429Search in Google Scholar
35 M.Goldschmitz, L.Karlsson, R.Pedersen, S.Rigdal, J.van den Broek: Developments in the welding of supermartensitic stainless steels: Recent developments and applications, Welding International18 (7), 2004, pp. 543–54910.1533/wint.2004.3286Search in Google Scholar
36 D.Zou, Y.Han, D.Yan, D.Wang, W.Zhang, G.Fan: Hot workability of 00Cr13Ni5Mo2 supermartensitic stainless steel, Materials and Design32 (2011), pp. 4443–444810.1016/j.matdes.2011.03.067Search in Google Scholar
37 D.Zou, Y.Han, W.Zhang, X.Fang: Influence of tempering process on mechanical properties of 00Cr13Ni4Mo supermartensitic stainless steel, Journal of Iron and Steel Research International17 (8), 2010, pp. 50–5410.1016/s1006-706x(10)60128-8Search in Google Scholar
38 P.Toussaint, J. J.Dufrane: Advances in the making of and base material properties of supermartensitic stainless steels (SMSS), Supermartensitic Stainless Steel 2002, Brussels, Belgium, 3–4 October 2002, pp. 1–7Search in Google Scholar
39 A.Dhooge: Supermartensitic stainless steel – On a continuous learning curve, HeraNews ((??)), March 2003, p. 5 ((??DOI??))Search in Google Scholar
40 P.Woollin: Postweld heat treatment to avoid intergranular stress corrosion cracking of supermartensitic stainless steels, IIW Document, IX-2193-06/IX-H-630-06 10.1007/bf03266598Search in Google Scholar
41 D.Zou, X.Liu, Y.Han, W.Zhang, J.Li, K.Wu: Influence of heat treatment temperature on microstructure and property of 00Cr13Ni5Mo2 supermartensitic stainless steel, Journal of Iron and Steel Research International21 (3), 2014, pp. 364–36810.1016/s1006-706x(14)60056-xSearch in Google Scholar
42 Y.Liu, D.Ye, Q.Yong, J.Su, K.-Y.Zhao, W.Jiang: Effect of heat treatment on microstructure and property of Cr13 supermartensitic stainless steel, Journal of Iron and Steel Research International18 (11), 2011, pp. 60–6610.1016/s1006-706x(11)60118-0Search in Google Scholar
43 X. P.Ma, L. J.Wang, C. M.Liu, S. V.Subramanian: Microstructure and properties of 13Cr5Ni1Mo0.025Nb0.09V0.06N supermartensitic stainless steel, Materials Science and Engineering A539 (2012), pp. 271–27910.1016/j.msea.2012.01.093Search in Google Scholar
44 A.Bojack, L.Zhao, P. F.Morris, J.Sietsma: In-situ determination of austenite and martensite formation in 13Cr6Ni2Mo supermartensitic stainless steel, Material Characterization71 (2012), pp. 77–8610.1016/j.matchar.2012.06.004Search in Google Scholar
45 J. R.Tolchard, A.Sømme, J. K.Solberg, K. G.Solheim: On the measurement of austenite in supermartensitic stainless steel by X-ray diffraction, Materials Characterization99 (2015), pp. 238–24210.1016/j.matchar.2014.12.005Search in Google Scholar
46 W.Jiang, K.-Y.Zhao, D.Ye, J.Li, Z.-D.Li, J.Su: Effect of heat treatment on reversed austenite in Cr15 supermartensitic stainless steel, Journal of Iron and Steel Research International20 (5), 2013, pp. 61–6510.1016/s1006-706x(13)60099-0Search in Google Scholar
47 Eun SeoPark, Dae KyoungYoo, Jee HyunSung, Chang YongKang, Jun HeeLee, Jang HyunSung: Formation of reversed austenite during tempering of 14Cr-7Ni-0.3Nb0.7Mo-0.03C supermartensitic stainless steel, Metals and Materials International Vol. 10, No. 6 (2004), pp. 521–52510.1007/bf03027413Search in Google Scholar
48 C. A. D.Rodrigues, P. L. D.Lorenzo, A.Sokolowski, C. A.Barbosa, J. M. D. A.Rollo: Titanium and molybdenum content in supermartensitic stainless steel, Materials Science and Engineering A460–461 (2007), pp. 149–15210.1016/j.msea.2007.01.016Search in Google Scholar
49 X. P.Ma, L. J.Wang, C. M.Liu, S. V.Subramanian: Role of Nb in low interstitial 13Cr supermartensitic stainless steel, Materials Science and Engineering A528 (2011), pp. 6812–681810.1016/j.msea.2011.05.065Search in Google Scholar
50 X. P.Ma, L. J.Wang, S. V.Subramanian, C. M.Liu: Studies on Nb microalloying of 13Cr supermartensitic stainless steel, Metallurgical and Materials Transactions A (2012), pp. 74–8110.1007/s11661-012-1268-4Search in Google Scholar
51 G. R.Ebrahimi, A.Momeni, M.Jahazi, P.Bocher: Dynamic recrystallization and precipitation in 13Cr supermartensitic stainless steels, Metallurgical and Materials Transactions A45a (2013), pp. 2219–223110.1007/s11661-013-2119-7Search in Google Scholar
52 B. RaviKumar, SailajaSharma, ParikshitMunda, R. K.Minz: Structure and microstructure evolution of a ternary Fe-Cr-Ni alloy akin to supermartensitic stainless steel, Materials and Design50 (2013), pp. 392–39810.1016/j.matdes.2013.03.035Search in Google Scholar
53 ToshihiroTsuchiyama, JunyaTobata, TeruyukiTao, NobuoNakada, SetsuoTakaki: Quenching and partitioning treatment of a low-carbon martensitic stainless steel, Materials Science and Engineering A532 (2012), pp. 585–59210.1016/j.msea.2011.10.125Search in Google Scholar
54 J. M.Aquino, C. A. DellaRovere, S. E.Kuri: Intergranular corrosion susceptibility in supermartensitic stainless steel weldments, Corrosion Science51 (2009), pp. 2316–232310.1016/j.corsci.2009.06.009Search in Google Scholar
55 E.Deleu, A.Dhooge: Weldability assessment of thick supermartensitic 13Cr stainless steel welds made with matching consumables, Belgian Welding Institute (BIL)49 (2005), Issue 5–6, pp. 34–4410.1007/bf03263408Search in Google Scholar
56 E.Deleu, A.Dhooge: Assesment of 13Cr supermartensitic stainless steel pipe welds in as-welded or heat treated condition, Stainless Steel World, July/August 2003, pp. 42–49Search in Google Scholar
57 www.staInless-steel-world.net/supermarten/welding.asp.Search in Google Scholar
58 M. C.Balmforth, J. C.Lippold: A preliminary ferritic martensitic stainless steel constitution diagram, Welding Journal Vol. 77 (1998), pp. 1s–7sSearch in Google Scholar
59 E.Deleu, A.Dhooge: Fracture behaviour of supermartensitic 13% Cr stainless steel made with matching consumables, Supermartensitic Stainless Steels 2002, Brussels, Belgium, 3–4 October 2002, pp. 99–112Search in Google Scholar
60 J. R.Still: Selecting filler metals for offshore piping, Welding Journal, Vol. 82, May 2003, pp. 39–45Search in Google Scholar
61 C.Jochum, H.Heuser, R.Sölch: Properties of matching filler metals for supermartensitic stainless pipelines, Supermartensitic Stainless Steel 2002, Brussels, Belgium, 3–4 October 2002, pp. 37–43Search in Google Scholar
62 S.Hashizume, K.Masamura, K.Yamazaki, T.Ono, P.Woollin: Mechanical property and corrosion resistance of welded joints of 13%Cr martensitic stainless steels, Supermartensitic Stainless Steel 2002, Brussels, Belgium, 3–4 October 2002, pp. 91–98Search in Google Scholar
63 A.Dhooge, E.Deleu: Properties of laser welded supermartensitic stainless steels, Super martensitic Stainless Steels 1999, Brussels, Belgium, 27–28 May 1999, pp. 255–263Search in Google Scholar
64 K.Makhmari, N.Behlani: 13%Cr laser welded pipe experience in PDO, Stainless Steel World Conference 2005, Maastricht, The Netherlands, 8–10 November 2005, pp. 300–30510.1016/S0262-1762(05)00537-7Search in Google Scholar
65 C. A. DellaRovere, C. R.Ribeiro, R.Silva, N. G.Alcântara, S. E.Kuri: Local mechanical properties of radial friction welded supermartensitic stainless steel pipes, Materials and Design56 (2014), pp. 423–42710.1016/j.matdes.2013.11.020Search in Google Scholar
66 P. BalaSrinivasan, S. W.Sharkawy, W.Dietzel: Hydrogen assisted stress-cracking behaviour of electron beam welded supermartensitic stainless steel weldments, Materials Science and Engineering A385 (2004), pp. 6–1210.1016/j.msea.2004.03.029Search in Google Scholar
67 D.Thibault, P.Bocher, M.Thomas: Residual stress and microstructure in welds of 13%Cr-4%Ni martensitic stainless steel, Journal of Materials Processing Technology209 (2009), pp. 2195–220210.1016/j.jmatprotec.2008.05.005Search in Google Scholar
68 A.Griffiths, W.Nimmo, B.Roebuck, G.Hinds, A.Turnbull: A novel approach to characterising the mechanical properties of supermartensitic 13%Cr stainless steel welds, Materials Science and Engineering A384 (2004), pp. 83–9110.1016/j.msea.2004.06.015Search in Google Scholar
69 J.Enerhaug, Ø.Grong, U. M.Steinsmo: Factors affecting initiation of pitting corrosion in supermartensitic stainless steel weldments, Science and Technology of Welding and Joining Vol. 6 (2001), No. 5, pp. 330–33810.1179/136217101101538866Search in Google Scholar
70 Z.Sebastián, S.Estela, S.Hernán: Effects of welding procedure on corrosion resistance and hydrogen embrittlement of supermartensitic stainless steel deposits, Journal of Iron and Steel Research International20 (12) (2013), pp. 124–13210.1016/s1006-706x(13)60225-3Search in Google Scholar
71 C. A. DellaRovere, J. M.Aquino, C. R.Ribeiro, R.Silva, N. G.Alcantara, S. E.Kuri: Corrosion behavior of radial friction welded supermartensitic stainless steel pipes, Materials and Design65 (2015), pp. 318–32710.1016/j.matdes.2014.09.003Search in Google Scholar
72 A.Bahrami: Fatigue performance of riser girth welds for deep-water applications, paper presented at Deep Water Technology Conference, Asia, Kuala Lumpur, Asia, 26–27 October 2009Search in Google Scholar
73 X.-C.Han, J.Li, K.-Y.Zhao, W.Zhang, J.Su: Effect of chloride on semiconducting properties of passive films formed on supermartensitic stainless steel in NaHCO3 solution, Journal of Iron and Steel Research International20 (5) (2013), pp. 74–7910.1016/s1006-706x(13)60101-6Search in Google Scholar
74 N.Anselmo, J. E.May, N. A.Mariano, P. A. P.Nascente, S. E.Kuri: Corrosion behavior of supermartensitic stainless steel in aerated and CO2-saturated synthetic seawater, Materials Science and Engineering A428 (2006), pp. 73–7910.1016/j.msea.2006.04.107Search in Google Scholar
75 J.Enerhaug, T.Wenn, U.Steinsmo, Ø.Grong: Effects of surface condition and H2 S on localized corrosion in supermartensitic stainless steel weldments, Supermartensitic Stainless Steel 2002, Brussels, Belgium, 3–4 October 2002, pp. 185–193Search in Google Scholar
76 K. G.Solheim, J. K.Solberg: Hydrogen induced stress cracking in supermartensitic stainless steels – Stress threshold for coarse grained HAZ, Engineering Failure Analysis32 (2013), pp. 348–35910.1016/j.engfailanal.2013.04.003Search in Google Scholar
77 K. G.Solheim, J. K.Solberg, J.Walmsley, F.Rosenqvist, T. H.Bjørnå: The role of retained austenite in hydrogen embrittlement of supermartensitic stainless steel, Engineering Failure Analysis34 (2013), pp. 140–14910.1016/j.engfailanal.2013.07.025Search in Google Scholar
78 L.Coudreuse, M.Verneau, C.Lojewski, B.Bonnefois, J. J.Dufrane: Weldable supermartensitic stainless steels: Sulfide stress cracking resistance of welded joints, Usinor Industeel (France and Belgium)Search in Google Scholar
79 S.Zhu, H.Ma, J.Li, Z.Yang: Effect of elemental sulfur on corrosion behavior of 13Cr supermartensitic stainless steel, Applied Mechanics and Materials556–562 (2014), pp. 162–16510.4028/www.scientific.net/amm.556-562.162Search in Google Scholar
80 P.Woollin, D.Carrouge: Supermartensitic stainless steel heat affected zone microstructures, Stainless Steel World 2003 Conference and Expo, Maastricht, The Netherlands, 11–13 November 2003, pp. 196–208Search in Google Scholar
81 X. W.Lei, Y. R.Feng, A. Q.Fu, J. X.Zhang, Z. Q.Bai, C. X.Yin, C. H.Lu: Investigation of stress corrosion cracking behavior of super 13Cr tubing by full-scale tubular goods corrosion test system, Engineering Failure Analysis50 (2015), pp. 62–7010.1016/j.engfailanal.2015.02.001Search in Google Scholar
82 P.Woollin, D.Carrouge: Heat affected zone microstructure in supermartensitic stainless steels, Supermartensitic Stainless Steel 2002, Brussels, Belgium, 3–4 October 2002, pp. 199–204Search in Google Scholar
© 2016, Carl Hanser Verlag, München