Abstract
The main aim of machining is to provide the dimensional preciseness together with surface and geometric quality of the workpiece to be manufactured within the desired limits. Today, it is quite hard to drill widely utilized Ti-6Al-4 V alloys owing to their superior features. Therefore, in this study, the effects of temperature, chip formation, thrust forces, surface roughness, burr heights, hole diameter deviations and tool wears on the drilling of Ti-6Al-4 V were investigated under dry cutting conditions with different cutting speeds and feed rates by using tungsten carbide (WC) and high speed steel (HSS) drills. Moreover, the mathematical modeling of thrust force, surface roughness, burr height and tool wear were formed using Matlab. It was found that the feed rate, cutting speed and type of drill have a major effect on the thrust forces, surface roughness, burr heights, hole diameter deviations and tool wears. Optimum results in the Ti-6Al-4 V alloy drilling process were obtained using the WC drill.
Kurzfassung
Das Hauptziel der maschinellen Bearbeitung besteht darin, die dimensionale Präzision sicherzustellen, zusammen mit einer guten Oberflächenqualität und geometrischen Qualität des Werkstückes, das jeweils unter den gegebenen Randbedingungen hergestellt werden muss. Heute ist es immer noch schwer, die vielfach genutzten Ti-6Al-4V-Legierungen aufgrund ihrer überragenden Eigenschaften zu drehen. Deshalb wurden in der diesem Beitrag zugrunde liegenden Studie die Temperatur, die Spanbildung, die Wirkkräfte, die Oberflächenrauheit, die Grathöhen, die Lochdurchmesserabweichungen und die Werkzeugverschleiße beim Bohren von Ti-6Al-4 V unter Trockenschneidbedingungen bei verschiedenen Schnittgeschwindigkeiten und Vorschubraten von Bohrern aus Woframcarbid (WC) und Hochgeschwindigkeitsschnellarbeitsstahl (HSS) untersucht. Darüber hinaus wurde eine mathematische Modellierung der Wirkkraft, der Oberflächenrauheit, der Grathöhen, der Lochdurchmesserabweichung und der Werkzeugverschleiße mittels Matlab durchgeführt. Es stellte sich heraus, dass die Vorschubrate, die Schnittgeschwindigkeit und der Bohrerwerkstoff erhebliche Auswirkungen auf die Wirkkraft, Oberflächenrauheit, Grathöhen, Lochdurchmesserabweichung und der Werkzeugverschleiße haben. Die besten Ergebnisse beim Bohren der Ti-6Al-4V-Legierung wurden mit dem WC-Bohrer erreicht.
References
1 M.Nouari, H.Makich: Experimental investigation on the effect of the material microstructure on tool wear when machining hard titanium alloys: Ti-6Al-4 V and Ti-555, International Journal of Refractory Metals and Hard Materials41 (2013), pp. 259–26910.1016/j.ijrmhm.2013.04.011Search in Google Scholar
2 P. K.Farayibi, J. A.Folkes, A. T.Clare: Laser deposition of Ti-6Al-4 V wire with WC powder for functionally graded components, Materials and Manufacturing Processes28 (2013), pp. 514–51810.1080/10426914.2012.718477Search in Google Scholar
3 N.Khanna, J. P.Davim: Design-of-experiments application in machining titanium alloy for aerospace structural components, Measurement61 (2015), pp. 280–29010.1016/j.measurement.2014.10.059Search in Google Scholar
4 Y. H.Çelik: Investigating the effects of cutting parameters on the hole quality in drilling the Ti-6Al-4 V alloy, Materiali in Tehnologije48 (2014), No. 5, pp. 653–659 UDK 621.95:669.295Search in Google Scholar
5 R.Komanduri, W. R.Reed: Evaluation of carbide grades and a new cutting geometry for machining titanium alloys, Wear92 (1983), pp. 113–12310.1016/0043-1648(83)90011-XSearch in Google Scholar
6 J. R.Myers, H. B.Bomberger, F. H.Froes: Corrosion behaviour and use of titanium and its alloys, Journal of Metals36 (1984), No. 10, pp. 50–60Search in Google Scholar
7 F. H.Froes, H. B.Bomberger: The beta titanium alloys, Journal of Metals36 (1985), No. 11, pp. 55–62Search in Google Scholar
8 U.Çaydaş, A.Hasçalık, Ö.Buytoz, A.Meyveci: Performance evaluation of different twist drills in dry drilling of AISI 304 austenitic stainless steel, Materials and Manufacturing Processes20 (2011), pp. 951–96010.1080/10426914.2010.520790Search in Google Scholar
9 K. H.Park, A.Beal, D.Kim, P.Know, J.Lantrip: Tool wear in drilling of composite/titanium stack using carbide and polycrystalline diamond tools, Wear271 (2011), pp. 2826–283510.1016/j.wear.2011.05.038Search in Google Scholar
10 A.Yardimeden, E.Kilickap, Y. H.Celik: Effects of cutting parameters and point angle on thrust force and delamination in drilling of CFRP, Materials Testing56 (2014), No. 11–12, pp. 1042–104810.3139/120.110666Search in Google Scholar
11 T.Minton, S.Ghani, F.Sammler, R.Bateman, P.Füstmann, M.Roeder: Temperature of internally-cooled diamond-coated tools for dry-cutting titanium, International Journal of Machine Tools and Manufacture75 (2013), pp. 27–3510.1016/j.ijmachtools.2013.08.006Search in Google Scholar
12 F.Wang, Y.Liu, Y.Zhang, Z.Tang, R.Ji, C.Zheng: Compound machining of titanium alloy by super high speed EDM milling and arc machining, Journal of Materials Processing Technology214 (2014), pp. 531–53810.1016/j.jmatprotec.2013.10.015Search in Google Scholar
13 M.Sentilkumar, A.Parabukarthi, V.Krishnaraj: Study on tool wear and chip formation during drilling carbon fiber reinforced polymer (CFRP)/titanium alloy (Ti-6Al-4V) stacks, Procedia Engineering64 (2013), pp. 582–59210.1016/j.proeng.2013.09.133Search in Google Scholar
14 E.Feldsthein: The influence of machining condition on burr shapes when drilling reach-through holes in difficult-to-cut materials, Advanced in Manufacturing Science and Technology35 (2011), No. 4, pp. 75–83Search in Google Scholar
15 J. L.Cantero, M. M.Tardío, J. A.Canteli, M.Marcos, M. H.Miguélez: Dry drilling of alloy Ti-6Al-4V, International Journal of Machine Tools and Manufacture45 (2005), No. 11, pp. 1246–125510.1016/j.ijmachtools.2005.01.010Search in Google Scholar
16 Ö.Isbilir, E.Ghassemieh: Finite element analysis of drilling of titanium alloy, Procedia Engineering10 (2011), pp. 1877–188210.1016/j.proeng.2011.04.312Search in Google Scholar
17 Y. H.Guu, C. S.Deng, M.Ti-Kunang Hou, C. H.Hsu, K. S.Tseng: Optimization of machining parameters for stress concentration in microdrilling of titanium alloy, Materials and Manufacturing Processes27 (2012), pp. 207–21310.1080/10426914.2011.566657Search in Google Scholar
18 D.Biermann, H.Hartmann: Reduction of burr formation in drilling using cryogenic process cooling, Proc. 3 of the 45th CIRP Conference on Manufacturing System (2012), pp. 85–9010.1016/j.procir.2012.07.016Search in Google Scholar
19 J.Pujana, A.Rivero, A.Celaya, L. N.López de Lacalle: Analysis of ultrasonic-assisted drilling of Ti-6Al-4V, International Journal of Machine Tools and Manufacture49 (2009), No. 6, pp. 500–50810.1016/j.ijmachtools.2008.12.014Search in Google Scholar
20 O.Pecat, E.Brinksmeier: Tool wear analyses in low frequency vibration assisted drilling of CFRP/Ti-6Al-4 V stack materials, Proc. of CIRP14 (2014), pp. 142–14710.1016/j.procir.2014.03.050Search in Google Scholar
21 O.Pecat, EBrinksmeier: Low damage drilling of CFRP/titanium compound materials for fastening, Procedia CIRP13 (2014), pp. 1–710.1016/j.procir.2014.04.001Search in Google Scholar
22 P. K.Shetty, R.Shetty, D.Shetty, F.Rehaman, T. K.Jose: Machinability study on dry drilling of titanium alloy Ti-6Al-4 V using L9 orthogonal array, Procedia Materials Science5 (2014), pp. 2605–261410.1016/j.mspro.2014.07.521Search in Google Scholar
23 J.Prasanna, L.Karunamoorthy, M. V.Raman, S.Prashanth, D. R.Chordia: Optimization of process parameters of small hole dry drilling in Ti-6Al-4 V using Taguchi and grey relational analysis, Measurement48 (2014), pp. 346–35410.1016/j.measurement.2013.11.020Search in Google Scholar
24 G.Boothroyd, W. A.Knight: Fundamentals of Machining and Machine Tools, 3rd Edition, CRC Press, Boca Raton, Florida, USA (2005)Search in Google Scholar
25 L.Dan, J.Mathew: Tool wear and failure monitoring techniques for turning: A review, International Journal of Machine Tools and Manufacture30 (1990), No. 4, pp. 579–59810.1016/0890-6955(90)90009-8Search in Google Scholar
26 P. F.Zhang, N. J.Churi, Z. J.Pei, C.Treadwell: Mechanical drilling processes for titanium alloys: A literature review, Machining Sciences and Technology12 (2008), pp. 417–44410.1080/10910340802519379Search in Google Scholar
27 D. A.Dornfeld: Strategies for preventing and minimizing burr formation, Laboratory for Manufacturing Automation, Consortium on Deburring and Edge Finishing, University of California at Berkeley, USA (2004), escholarship.org/uc/item/2239m1nsSearch in Google Scholar
© 2016, Carl Hanser Verlag, München