Abstract
This article describes the fabrication of C60-doped carbazole-based bi-functional photorefractive polyacrylates, the C60-doped concentrations are 0.0, 0.2, 0.5, 0.7 and 1.0 wt.-%, respectively. For these photorefractive polyacrylates, differential scanning calorimetric runs have been taken under nonisothermal conditions at different heating rates. The result indicates that the glass transition temperature Tg first increases and then decreases with increasing of C60 content. Tg of the same sample increases with increasing heating rate. The activation energy of glass transition (Eg) has been evaluated based on the Moynihan and Kissinger model. The results showed that both Eg values obtained from Kissinger's and Moynihan's relations are in good agreement.
Kurzfassung
In diesem Beitrag wird die Herstellung von C60-dotierten Carbazol-basierten bi-funktionalen photorefraktiven Polyacrylaten beschrieben, wobei die Konzentration der C60-Dotierung entsprechend 0,0, 0,2, 0,5, 0,7 bzw. 1,0 wt.-% betrug. Für diese photorefraktiven Polyacrylate wurden differentialkalorimetrische Durchläufe unter nicht-isothermen Bedingungen und bei verschiedenen Aufheizraten durchgeführt. Die Ergebnisse deuten darauf hin, dass die Glasübergangstemperatur Tg zunächst zunimmt und dann mit zunehmendem C60-Gehalt abnimmt. In gleicher Weise nimmt der Wert von Tg zu, wenn die Aufheizrate ansteigt. Die Aktivierungsenergie des Glasübergangs (Eg) wurde basierend auf dem Moynihan und Kissinger Modell evaluiert. Die Ergebnisse zeigen, dass beide Eg Werte, die mit Kissinger's und Moynihan's Relationen berechnet wurden, gut übereinstimmen.
References
1 N.Tsutsumi, K.Kinashi, A.Nonomura, W.Sakai: Quickly updatable hologram images with high performance photorefractive polymer composites, SPIE – The International Society for Optical Engineering8258 (2012), No. 9, pp. 2978–298210.1117/12.913763Search in Google Scholar
2 B.Kippelen, S. R.Marder, E.Hendrickx, J. L.Maldonado, G.Guillemet, B. L.Volodin, D. D.Steele, Y.Enami, Sandalphon, Y. J.Yao, J. F.Wang, H.Röckel, L.Erskine, N.Peyghambarian: Infrared photorefractive polymers and their applications for imaging, Science279 (1998), No. 5347, pp. 54–5710.1126/science.279.5347.54Search in Google Scholar PubMed
3 S.Köber, M.Salvador, K.Meerholz: Organic photorefractive materials and applications, Adv. Mater.23 (2011), pp. 4725–476310.1002/adma.201100436Search in Google Scholar
4 L.Zhang, J.Shi, S. K.Cao: Photorefractive materials, from polymer to hyper-structured molecule, Adv. Mater. Research123–125 (2010), pp. 871–87410.4028/www.scientific.net/AMR.123-125.871Search in Google Scholar
5 O.Ostroverkhova, W. E.Moerner: Organic photorefractives: Mechanisms, materials, and applications, Chem. Rev.104 (2004), pp. 3267–331410.1021/cr960055cSearch in Google Scholar PubMed
6 K.Meerholz, B. L.Volodin, Sandalphon, B.Kippelen, N.Peyghambarian: A photorefractive polymer with high optical gain and diffraction efficiency near 100-percent, Nature371 (1994), pp. 497–50010.1038/371497a0Search in Google Scholar
7 J.Thomas, R. A.Norwood, N.Peyghambarian: Non-linear optical polymers for photorefractive applications, J. Mater. Chem.19 (2009), pp. 7476–748910.1039/B908130ESearch in Google Scholar
8 H.Fang, M. T.Li: Photorefractive effect in an azobenzene chromophore side groups polymer, Journal of Wuhan University of Technology – Mater. Sci. Ed.6 (2014), No. 29, pp. 1290–129310.1007/s11595-014-1083-4Search in Google Scholar
9 L.Zhang, J.Shi, Z.Yang, M. M.Huang, Z. J.Chen, Q. H.Gong, S. K.Cao: Photorefractive properties of polyphosphazenes containing carbazole-based multifunctional chromophores, Polymer49 (2008), pp. 2107–211410.1016/j.polymer.2007.09.038Search in Google Scholar
10 S. F.Chen, L. L.Sun, X.Luo, X. D.Jiang, W. D.Wu, Y.Fang, C. Q.Huang, R. Z.Yang, Q. J.Zhang: Synthesis and characterization of bi-functional photorefractive polymers with high molecular weight and low glass transition temperature, Chin. J. Poly. Sci.32 (2014), No. 5, pp. 577–58610.1007/s10118-014-1434-9Search in Google Scholar
11 A. A.Elabbar, M. E.Oyoun, A.Abu-Sehly, S. N.Alamri: Crystallization kinetics study of Pb4.3Se95.7 chalcogenide glass using DSC technique, Journal of Physics and Chemistry of Solids69 (2008), No. 10, pp. 2527–253010.1016/j.jpcs.2008.05.008Search in Google Scholar
12 D.Souri: Investigation of glass transition temperature in (60-x)V2 O5-40TeO2-x NiO glasses at different heating rates, Journal of Materials Science46 (2011), No. 21, pp. 6998–700310.1007/s10853-011-5668-4Search in Google Scholar
13 A. A.Abu-Sehly, S. N.Alamri, A. A.Joraid: Measurements of DSC isothermal crystallization kinetics in amorphous selenium bulk samples, Journal of Alloys & Compounds476 (2009), No. 1–2, pp. 348–35110.1016/j.jallcom.2008.08.059/Search in Google Scholar
14 R. P.Wang, C. J.Zha, A. V.Rode, S. J.Madden, B.Luther-Davies: Thermal characterization of Ge-As-Se glasses by differential scanning calorimetry, J. Mater. Sci. Mater. Electron.18 (2007), No. 1, pp. 419–42210.1007/s10854-007-9229-1Search in Google Scholar
15 S.Srivastava, M.Zulfequar, A.Kumar: Study of glass transition kinetics in glass alloys of Se100-x Bix, Chalcogenide Letters6 (2009), No. 9, pp. 403–414Search in Google Scholar
16 P.Kumar, R.Thangaraj, T. S.Sathiaraj: Thermal analysis and annealing temperature dependence of electrical properties in Sn10 Sb20 Se70 glassy semiconductor, Journal of Materials Science43 (2008), No. 18, pp. 6099–610410.1007/s10853-008-2948-8Search in Google Scholar
17 N.Mehta, A.Kumar: Applicability of Kissinger's relation in the determination of activation energy of glass transition process, Journal of Optoelectronics & Advanced Materials7 (2005), No. 3, pp. 1473–1478Search in Google Scholar
18 P.Liu, L.Yu, H.Liu, L.Chen, L.Li: Glass transition temperature of starch studied by a high-speed DSC, Carbohydrate Polymers77 (2009) No. 2, pp. 250–25310.1016/j.carbpol.2008.12.027Search in Google Scholar
19 M. A.Abdel-Rahim, A. Y.Abdel-Latief, A. S.Soltan, M. E.Oyoun: Crystallization kinetics of overlapping phases in Cu6 Ge14 Te80 chalcogenide glass, Physica B: Condensed Matter322 (2002), No. 3, pp. 252–26110.1016/S0921-4526(02)01190-0Search in Google Scholar
20 C.Chattopadhyay, S.Sarkar, S.Sangal, K.Mondal: Simulated isothermal crystallization kinetics from non-isothermal experimental data, Transactions of the Indian Institute of Metals67 (2014), No. 6, pp. 945–95810.1007/s12666-014-0422-7Search in Google Scholar
21 R.Chander, R.Thangaraj: Thermal and optical analysis of Te-substituted Sn-Sb-Se chalcogenide semiconductors, Applied Physics A99 (2010), No. 1, pp. 181–18710.1007/s00339-009-5486-6Search in Google Scholar
22 A. A.Joraid, A. A.Abu-Sehly, S. N.Alamri: A study on isothermal kinetics of glassy Sb9.1 Te20.1 Se70.8 alloy, Journal of Taibah University for Science2 (2009), pp. 106–11710.1016/S1658-3655(12)60013-2Search in Google Scholar
23 R. S.Tiwari, N.Mehta, R. K.Shukla, A.Kumar: Kinetic parameters of glass transition in glassy Se1−x Sbx alloys, Turkish Journal of Physics29 (2005), pp. 233–241Search in Google Scholar
24 A. H.Moharram, A. A.Abu-Sehly, M. A.El-Oyoun, A. S.Soltan: Pre-crystallization and crystallization kinetics of some Se-Te-Sb glasses, Physica B Condensed Matter324 (2002), No. 1–4, pp. 344–35110.1016/S0921-4526(02)01421-7Search in Google Scholar
25 C. T.Moynihan, A. J.Easteal, J.Wilder, J.Tucker: Dependence of the glass transition temperature on heating and cooling rate, J. Phys. Chem.78 (1974), No. 26, pp. 2673–267610.1021/j100619a008Search in Google Scholar
26 J. P.Larmagnac, J.Grenet, P.Michon: Glass transition temperature dependence on heating rate and on ageing for amorphous selenium films, Journal of Non-Crystalline Solids45 (1981), No. 81, pp. 157–1681016/0022-3093(81)90184-8Search in Google Scholar
27 E.Woldt, D. J.Jensen: Recrystallization kinetics in copper: Comparison between techniques, Metallurgical & Materials Transactions A26 (1995), No. 7, pp. 1717–172410.1007/BF02670758Search in Google Scholar
© 2016, Carl Hanser Verlag, München