Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 23, 2016

Investigation of glass transition kinetics in C60-doped carbazole-based photorefractive polyacrylates

Untersuchung der Glasübergangskinetik in C60-dotierten Carbazol-basierten photorefraktiven Polyacrylaten
  • Shufan Chen , Baili Chen , Chuanqun Huang , Xuan Luo , Yu Fang and Weidong Wu
From the journal Materials Testing


This article describes the fabrication of C60-doped carbazole-based bi-functional photorefractive polyacrylates, the C60-doped concentrations are 0.0, 0.2, 0.5, 0.7 and 1.0 wt.-%, respectively. For these photorefractive polyacrylates, differential scanning calorimetric runs have been taken under nonisothermal conditions at different heating rates. The result indicates that the glass transition temperature Tg first increases and then decreases with increasing of C60 content. Tg of the same sample increases with increasing heating rate. The activation energy of glass transition (Eg) has been evaluated based on the Moynihan and Kissinger model. The results showed that both Eg values obtained from Kissinger's and Moynihan's relations are in good agreement.


In diesem Beitrag wird die Herstellung von C60-dotierten Carbazol-basierten bi-funktionalen photorefraktiven Polyacrylaten beschrieben, wobei die Konzentration der C60-Dotierung entsprechend 0,0, 0,2, 0,5, 0,7 bzw. 1,0 wt.-% betrug. Für diese photorefraktiven Polyacrylate wurden differentialkalorimetrische Durchläufe unter nicht-isothermen Bedingungen und bei verschiedenen Aufheizraten durchgeführt. Die Ergebnisse deuten darauf hin, dass die Glasübergangstemperatur Tg zunächst zunimmt und dann mit zunehmendem C60-Gehalt abnimmt. In gleicher Weise nimmt der Wert von Tg zu, wenn die Aufheizrate ansteigt. Die Aktivierungsenergie des Glasübergangs (Eg) wurde basierend auf dem Moynihan und Kissinger Modell evaluiert. Die Ergebnisse zeigen, dass beide Eg Werte, die mit Kissinger's und Moynihan's Relationen berechnet wurden, gut übereinstimmen.

*Correspondence Address, Prof. Dr. Weidong Wu, Research Center of Laser Fusion, China Academy of Engineering Physics, No. 64 Mianshan Road, Mianyang, Sichuan, 621900 China. E-mail:

Associate Prof. Dr. Shufan Chen, born in 1985, studied atthe Polymer Research Institute of Sichuan University, P. R. China, and completed her Doctor's Degree. In 2012, she started working on design and synthesis of novel organic optical materials in the Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, P. R. China.

Baili Chen, PhD candidate, was born in 1987. He received his Master's Degree from Southwest University of Science and Technology in Mianyang, P. R. China. At present, he is pursuing his doctoral degree in the Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, P. R. China. His research areas include synthesis and characterization of organic optical materials.

Associate Prof. Dr. Chuanqun Huang, was born in 1979, studied atthe University of Science and Technology of China in Hefei and completed her Doctor's Degree. In 2011, she started working on design and synthesis of novel environmental responsive polymers in the Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, P. R. China.

Associate Prof. Dr. Xuan Luo, born in 1975, received his Doctor's Degree from Southwest University of Science and Technology, Mianyang, P. R. China. In 2000, he started working in the Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, P. R. His major research areas include synthesis and characterization of low density inorganic foam materials.

Associate Prof. Yu Fang, born in 1980, received her Master's Degree from Sichuan University, Chengdu, P. R. China. She started working in the Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, P. R. China in 2004. Her research work is focused on the fabrication of ultra-low density organic foam materials.

Prof. Weidong Wu, born in 1967, studied at the Institute of Atomic and Molecular Physics of Sichuan University, Chengu, P. R. China, and completed his Doctor's Degree. He has been working in the Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, P. R. China, since 1994. His major research areas include condensed matter physics and plasma physics.


1 N.Tsutsumi, K.Kinashi, A.Nonomura, W.Sakai: Quickly updatable hologram images with high performance photorefractive polymer composites, SPIE – The International Society for Optical Engineering8258 (2012), No. 9, pp. 2978298210.1117/12.913763Search in Google Scholar

2 B.Kippelen, S. R.Marder, E.Hendrickx, J. L.Maldonado, G.Guillemet, B. L.Volodin, D. D.Steele, Y.Enami, Sandalphon, Y. J.Yao, J. F.Wang, H.Röckel, L.Erskine, N.Peyghambarian: Infrared photorefractive polymers and their applications for imaging, Science279 (1998), No. 5347, pp. 545710.1126/science.279.5347.54Search in Google Scholar PubMed

3 S.Köber, M.Salvador, K.Meerholz: Organic photorefractive materials and applications, Adv. Mater.23 (2011), pp. 4725476310.1002/adma.201100436Search in Google Scholar

4 L.Zhang, J.Shi, S. K.Cao: Photorefractive materials, from polymer to hyper-structured molecule, Adv. Mater. Research123–125 (2010), pp. 87187410.4028/ in Google Scholar

5 O.Ostroverkhova, W. E.Moerner: Organic photorefractives: Mechanisms, materials, and applications, Chem. Rev.104 (2004), pp. 3267331410.1021/cr960055cSearch in Google Scholar PubMed

6 K.Meerholz, B. L.Volodin, Sandalphon, B.Kippelen, N.Peyghambarian: A photorefractive polymer with high optical gain and diffraction efficiency near 100-percent, Nature371 (1994), pp. 49750010.1038/371497a0Search in Google Scholar

7 J.Thomas, R. A.Norwood, N.Peyghambarian: Non-linear optical polymers for photorefractive applications, J. Mater. Chem.19 (2009), pp. 7476748910.1039/B908130ESearch in Google Scholar

8 H.Fang, M. T.Li: Photorefractive effect in an azobenzene chromophore side groups polymer, Journal of Wuhan University of Technology – Mater. Sci. Ed.6 (2014), No. 29, pp. 1290129310.1007/s11595-014-1083-4Search in Google Scholar

9 L.Zhang, J.Shi, Z.Yang, M. M.Huang, Z. J.Chen, Q. H.Gong, S. K.Cao: Photorefractive properties of polyphosphazenes containing carbazole-based multifunctional chromophores, Polymer49 (2008), pp. 2107211410.1016/j.polymer.2007.09.038Search in Google Scholar

10 S. F.Chen, L. L.Sun, X.Luo, X. D.Jiang, W. D.Wu, Y.Fang, C. Q.Huang, R. Z.Yang, Q. J.Zhang: Synthesis and characterization of bi-functional photorefractive polymers with high molecular weight and low glass transition temperature, Chin. J. Poly. Sci.32 (2014), No. 5, pp. 57758610.1007/s10118-014-1434-9Search in Google Scholar

11 A. A.Elabbar, M. E.Oyoun, A.Abu-Sehly, S. N.Alamri: Crystallization kinetics study of Pb4.3Se95.7 chalcogenide glass using DSC technique, Journal of Physics and Chemistry of Solids69 (2008), No. 10, pp. 2527253010.1016/j.jpcs.2008.05.008Search in Google Scholar

12 D.Souri: Investigation of glass transition temperature in (60-x)V2 O5-40TeO2-x NiO glasses at different heating rates, Journal of Materials Science46 (2011), No. 21, pp. 6998700310.1007/s10853-011-5668-4Search in Google Scholar

13 A. A.Abu-Sehly, S. N.Alamri, A. A.Joraid: Measurements of DSC isothermal crystallization kinetics in amorphous selenium bulk samples, Journal of Alloys & Compounds476 (2009), No. 1–2, pp. 34835110.1016/j.jallcom.2008.08.059/Search in Google Scholar

14 R. P.Wang, C. J.Zha, A. V.Rode, S. J.Madden, B.Luther-Davies: Thermal characterization of Ge-As-Se glasses by differential scanning calorimetry, J. Mater. Sci. Mater. Electron.18 (2007), No. 1, pp. 41942210.1007/s10854-007-9229-1Search in Google Scholar

15 S.Srivastava, M.Zulfequar, A.Kumar: Study of glass transition kinetics in glass alloys of Se100-x Bix, Chalcogenide Letters6 (2009), No. 9, pp. 403414Search in Google Scholar

16 P.Kumar, R.Thangaraj, T. S.Sathiaraj: Thermal analysis and annealing temperature dependence of electrical properties in Sn10 Sb20 Se70 glassy semiconductor, Journal of Materials Science43 (2008), No. 18, pp. 6099610410.1007/s10853-008-2948-8Search in Google Scholar

17 N.Mehta, A.Kumar: Applicability of Kissinger's relation in the determination of activation energy of glass transition process, Journal of Optoelectronics & Advanced Materials7 (2005), No. 3, pp. 14731478Search in Google Scholar

18 P.Liu, L.Yu, H.Liu, L.Chen, L.Li: Glass transition temperature of starch studied by a high-speed DSC, Carbohydrate Polymers77 (2009) No. 2, pp. 25025310.1016/j.carbpol.2008.12.027Search in Google Scholar

19 M. A.Abdel-Rahim, A. Y.Abdel-Latief, A. S.Soltan, M. E.Oyoun: Crystallization kinetics of overlapping phases in Cu6 Ge14 Te80 chalcogenide glass, Physica B: Condensed Matter322 (2002), No. 3, pp. 25226110.1016/S0921-4526(02)01190-0Search in Google Scholar

20 C.Chattopadhyay, S.Sarkar, S.Sangal, K.Mondal: Simulated isothermal crystallization kinetics from non-isothermal experimental data, Transactions of the Indian Institute of Metals67 (2014), No. 6, pp. 94595810.1007/s12666-014-0422-7Search in Google Scholar

21 R.Chander, R.Thangaraj: Thermal and optical analysis of Te-substituted Sn-Sb-Se chalcogenide semiconductors, Applied Physics A99 (2010), No. 1, pp. 18118710.1007/s00339-009-5486-6Search in Google Scholar

22 A. A.Joraid, A. A.Abu-Sehly, S. N.Alamri: A study on isothermal kinetics of glassy Sb9.1 Te20.1 Se70.8 alloy, Journal of Taibah University for Science2 (2009), pp. 10611710.1016/S1658-3655(12)60013-2Search in Google Scholar

23 R. S.Tiwari, N.Mehta, R. K.Shukla, A.Kumar: Kinetic parameters of glass transition in glassy Se1−x Sbx alloys, Turkish Journal of Physics29 (2005), pp. 233241Search in Google Scholar

24 A. H.Moharram, A. A.Abu-Sehly, M. A.El-Oyoun, A. S.Soltan: Pre-crystallization and crystallization kinetics of some Se-Te-Sb glasses, Physica B Condensed Matter324 (2002), No. 1–4, pp. 34435110.1016/S0921-4526(02)01421-7Search in Google Scholar

25 C. T.Moynihan, A. J.Easteal, J.Wilder, J.Tucker: Dependence of the glass transition temperature on heating and cooling rate, J. Phys. Chem.78 (1974), No. 26, pp. 2673267610.1021/j100619a008Search in Google Scholar

26 J. P.Larmagnac, J.Grenet, P.Michon: Glass transition temperature dependence on heating rate and on ageing for amorphous selenium films, Journal of Non-Crystalline Solids45 (1981), No. 81, pp. 1571681016/0022-3093(81)90184-8Search in Google Scholar

27 E.Woldt, D. J.Jensen: Recrystallization kinetics in copper: Comparison between techniques, Metallurgical & Materials Transactions A26 (1995), No. 7, pp. 1717172410.1007/BF02670758Search in Google Scholar

Published Online: 2016-05-23
Published in Print: 2016-06-01

© 2016, Carl Hanser Verlag, München

Downloaded on 10.12.2023 from
Scroll to top button