Abstract
Monodispersed colloidal silver nanoparticles (Ag-NPs) were synthesized by a simple and rapid microwave method. A precursor, AgNO3, was reduced by ethylene glycol (EG) and N,N-dimethylformamide (DMF) in the presence of polyvinylpyrrolidone (PVP) as a stabilizer or capping agent. It was found that the concentration of AgNO3 significantly affected Ag-NPs particle sizes. The particle sizes decreased when the concentration decreased from 0.1 to 0.05 and 0.01 M, which corresponded to narrow size distribution of the particle diameters of approximately 60 to 80, 30 to 40 and 10 to 20 nm. The spherical-shaped monodispersed Ag-NPs were obtained by using a volume ratio of EG to DMF of 2.75 : 2.25, microwave power of 400 W and heating time of 2 min. The volume ratio of EG to DMF and the microwave power influenced the uniformity of the Ag-NPs shape and size, while the heating time had no effect. For antibacterial application, 60–80 and 10–20 nm Ag-NPs showed good disinfection ability against Escherichia coli (ATCC 25922) at the minimum inhibitory concentrations (MIC) of 32 and 16 µg × ml−1, respectively. In addition, the electrical resistance of the nanocomposites of DMF-loaded Ag-NPs (20–50 nm) without PVP on single-walled carbon nanotubes and polyethylene terephthalate (PET) was measured. As a result, it is obvious that the Ag-NPs help to increase the electrical conductivity of the nanocomposites as the electrical resistance of the Ag-NPs nanocomposites was 4.68 kΩ × cm−2 compared to that of the nanocomposites without Ag-NPs of 8.76 kΩ × cm−2.
Kurzfassung
In der diesem Beitrag zugrunde liegenden Studie wurden monodispersive kolloidale Silberpartikel (Ag-NPs) mittels eines einfachen und schnellen Mikrowellenverfahrens synthetisiert. Hierzu wurde ein Precursor, AgNO3, mittels Ethylenglykol (EG) und N,N-Dimethylformamid (DMF) reduziert, und zwar in Anwesenheit von Polyvinylpyrrolidon (PVP) als Stabilisator oder Abdeckreagenz. Es stellte sich heraus, dass mit der Konzentration von AgNO3 die Partikelgröße der Ag-NPs signifikant beeinflusst wird. Die Partikelgrößen nahmen ab, als die Konzentration von 0,1 auf 0,05 bzw. 0,01 M abnahm, wobei die enge Größenverteilung der Partikeldurchmesser von ungefähr 60 bis 80, 30 bis 40 und 10 bis 20 nm korrespondierte. Die kugelförmigen monodispersiven Ag-NPs wurden bei einem Volumenverhältnis EG zu DMF von 2.75 : 2.25, einer Mikrowellenleistung von 400 W und einer Wärmedauer von 2 min gewonnen. Das Volumenverhältnis von EG zu DMF und die Mikrowellenleistung beeinflusste die Gleichförmigkeit der Ag-NPs hinsichtlich Form und Größe, während die Erhitzungszeit keinen Einfluss hatte. Für antibakterielle Anwendungen zeigten die 60 bis 80 und 10 bis 20 nm Ag-NPs gute Desinfektionseigenschaften gegen Escherichia coli (ATCC 25922) bei minimalen inhibierenden Konzentrationen (Minimum Inhibitory Concentrations (MIC)) von entsprechend 32 und 16 µg × ml−1. Darüber hinaus wurde der elektrische Widerstand der Nanokomposite der DMF-geladenen Ag-NPs (20 bis 50 nm) ohne PVP auf einwandigen Carbon-Nanoröhrchen und Polyethylen-Terephthalat (PET) gemessen. Als ein Ergebnis stellte sich heraus, dass die Ag-NPs offensichtlich helfen, die elektrische Leitfähigkeit der Nanokomposite zu erhöhen, zumal der elektrische Widerstand der Ag-NPs Nanokomposite 4.68 kΩ × cm−2 betrug, wohingegen die Nanokomposite ohne Ag-NPs einen elektrischen Widerstand von 8.76 kΩ × cm−2 aufweisen.
References
1 Y.Li, Y.Wu, B. S.Ong: Facile synthesis of silver nanoparticles useful for fabrication of high-conductivity elements for printed electronics, J. Am. Chem. Soc.127 (2005), pp. 3266–326710.1021/ja043425kSearch in Google Scholar PubMed
2 R. J.Chimentao, I.Kirm, F.Medina, X.Rodrıguez, Y.Cesteros, P.Salagre, J. E.Sueiras, J. L. G.Fierro: Sensitivity of styrene oxidation reaction to the catalyst structure of silver nanoparticles, Appl. Surf. Sci.252 (2005), pp. 793–80010.1016/j.apsusc.2005.02.064Search in Google Scholar
3 P.Vasileva, B.Donkova, I.Karadjova, C.Dushkin: Synthesis of starch-stabilized silver nanoparticles and their application as a surface plasmon resonance-based sensor of hydrogen peroxide, Colloid Surface A38 (2011), pp. 2203–201010.1016/j.colsurfa.2010.11.060Search in Google Scholar
4 M. C.Talio, M. O.Luconi, L. P.Fernández: New silver nanosensor for nickel traces: Synthesis, characterization and analytical parameters, J. Life Sci.5 (2011), pp. 1072–1077Search in Google Scholar
5 F.Xin, L.Li: Decoration of carbon nanotubes with silver nanoparticles for advanced CNT/polymer nanocomposites, Composites Part A – Appl S.42 (2011), pp. 961–96710.1016/j.compositesa.2011.03.024Search in Google Scholar
6 Y.Chen, H.Kim: Synthesis of silver/silica nanocomposites anchored by polymer via in situ reduction, Mater. Lett.61 (2007), pp. 5040–504310.1016/j.matlet.2007.03.100Search in Google Scholar
7 S. M.Li, N.Jia, M. G.Ma, Z.Zhang, Q. H.Liu, R. C.Sun: Cellulose-silver nanocomposites: Microwave-assisted synthesis, characterization, their thermal stability, and antimicrobial property, Carbohyd. Polym.86 (2011), pp. 441–44710.1016/j.carbpol.2011.04.060Search in Google Scholar
8 J. J.Wu, G. J.Lee, Y. S.Chen, T. L.Hu: The synthesis of nano-silver/polypropylene plastics for antibacterial application, Curr. Appl. Phys.12 (2012), pp. S89–S9510.1016/j.cap.2012.02.026Search in Google Scholar
9 J. Z.Zhang: Optical Properties and Spectroscopy of Nanomaterials, World Scientific, Singapore (2009)10.1142/7093Search in Google Scholar
10 M.Tsuji, Y.Nishizawa, K.Matsumoto, N.Miyamae, T.Tsuji, X.Zhang: Rapid synthesis of silver nanostructures by using microwave-polyol method with the assistance of Pt seeds and polyvinylpyrrolidone, Colloid Surface A293 (2007), pp. 185–19410.1016/j.colsurfa.2006.07.027Search in Google Scholar
11 Z.Khan, S. A.Al-Thabaiti, A. Y.Obaid, A. O.Al-Youbi: Preparation and characterization of silver nanoparticles by chemical reduction method, Colloid Surface B82 (2011), pp. 513–51710.1016/j.colsurfb.2010.10.008Search in Google Scholar PubMed
12 Z.Min, W.Zuo-shan, Z.Ya-wei: Preparation of silver nanoparticle via active template under ultrasonic, T. Nonferr. Metal Soc.16 (2006), pp. 1348–135210.1016/S1003-6326(07)60018-1Search in Google Scholar
13 R. A.de Matos, T.da S. Cordeiro, R. E.Samad, N. D.Vieira, L. C.Courrol: Green synthesis of stable silver nanoparticles using Euphorbia milii latex, Colloid Surface A389 (2011), pp. 134–13710.1016/j.colsurfa.2011.08.040Search in Google Scholar
14 D. E.Watso, J. H.-G.Ng, J.Sigwarth, J.Bates, M. P. Y.Desmulliez: Silver nanocluster formation using UV radiation for direct metal patterning on polyimide, R. J.Baker (Ed.): Electronic System-Integration Technology Conference, Vol. 3, IEEE, Berlin, Germany (2010), pp. 1–410.1109/ESTC.2010.5642829Search in Google Scholar
15 A.Khan, A. M.El-Toni, S.Alrokayan, M.Alsalhi, M.Alhoshan, A. S.Aldwayyan: Microwave-assisted synthesis of silver nanoparticles using poly-N-isopropylacrylamide/acrylic acid microgel particles, Colloid Surface A377 (2011), pp. 356–36010.1016/j.colsurfa.2011.01.042Search in Google Scholar
16 M. G.Ma, J. F.Zhu, N.Jia, S. M.Li, R. C.Sun, S. W.Cao, F.Chen: Rapid microwave-assisted synthesis and characterization of cellulose- hydroxyapatite nanocomposites in N,N-dimethylacetamide solvent, Carbohyd. Res.345 (2010), pp. 1046–105010.1016/j.carres.2010.03.004Search in Google Scholar PubMed
17 Y.Chen, Y.Wei, P.Chang, L.Ye: Morphology-controlled synthesis of monodisperse silver spheres via a solvothermal method, J. Alloy Compd.509 (2011), pp. 5381–538710.1016/j.jallcom.2011.02.054Search in Google Scholar
18 O. C.Kappe, D.Dallinger, S. S.Murphree: Practical Microwave Synthesis for Organic Chemists, Wiley-VCH, Weinheim, Germany (2009)10.1002/9783527623907Search in Google Scholar
19 H.Jiang, K. S.Moon, Z.Zhang, S.Pothukuchi, C.Wong: Variable frequency microwave synthesis of silver nanoparticles, J. Nanopart. Res.8 (2006), pp. 117–12410.1007/s11051-005-7522-6Search in Google Scholar
20 Y.Gao, P.Jiangb, L.Songa, J. X.Wanga, L. F.Liua, D. F.Liua, Y. J.Xianga, Z. X.Zhanga, X. W.Zhaoa, X. Y.Doua, S. D.Luoa, W. Y.Zhoua, S. S.Xiea: Studies on silver nanodecahedrons synthesized by PVP-assisted N,N-dimethylformamide (DMF) reduction, J. Cryst. Growth.289 (2006), pp. 376–38010.1016/j.jcrysgro.2005.11.123Search in Google Scholar
21 G. L.Hornyak, J. J.Moore, H. F.Tibbals, J.Dutta: Fundamentals of Nanotechnology, CRC Press, London, UK (2009)Search in Google Scholar
22 W.Zhang, X.Qiao, J.Chen: Synthesis of silver nanoparticles – Effects of concerned parameters in water/oil microemulsion, Mater. Sci. Eng. B – Adv142 (2007), pp. 1–1510.1016/j.mseb.2007.06.014Search in Google Scholar
23 W. T.Cheng, Y. W.Chih, W. T.Yeh: In situ fabrication of photocurable conductive adhesives with silver nano-particles in the absence of capping agent, Int. J. Adhes.24 (2007), pp. 236–24310.1016/j.ijadhadh.2006.05.001Search in Google Scholar
24 T.Zhao, R.Sun, S.Yu, Z.Zhang, L.Zhou, H.Huang, R.Du: Size-controlled preparation of silver nanoparticles by a modified polyol method, Colloid Surface A366 (2010), pp. 197–20210.1016/j.colsurfa.2010.06.005Search in Google Scholar
25 S.Prabhu, E. K.Poulose: Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects, Int. Nano Lett.2 (2012), pp. 1–1010.1186/2228-5326-2-32Search in Google Scholar
26 J. P.Ruparelia, A. K.Chatterjee, S. P.Duttagupta, S.Mukherji: Strain specificity in antimicrobial activity of silver and copper nanoparticles, Acta Biomater.4 (2008), pp. 707–71610.1016/j.actbio.2007.11.006Search in Google Scholar PubMed
27 N.Lkhagvajav, I.Yasa, E.Celik, M.Koizhaiganova, O.Sari: Antimicrobial activity of colloidal silver nanoparticles prepared by sol-gel method, Dig. J. Nanomater. Bios.6 (2011), pp. 149–154Search in Google Scholar
© 2016, Carl Hanser Verlag, München