Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 23, 2016

Diffusible hydrogen content in submerged arc welds of a S960 type steel

Diffusionsfähiger Wasserstoffgehalt in Unterpulvergeschweißtem Schweißgut eines S 960 Stahls
  • Mehmet Türker
From the journal Materials Testing

Abstract

Hydrogen induced damage is a dangerous phenomenon affecting the weld quality with regard to construction service life even without visible indication. The determination of diffusible hydrogen in weld metal has been standardized at an international level in ISO 3690:2012. This international standard specifies the sampling and analytical procedure for the determination of diffusible hydrogen in martensitic, bainitic and ferritic steel weld metal which arises from the welding of such steels using arc welding processes with filler metal. In this study, S960QL steel is extensively used in the heavy transport, lifting and mining industry, where mobile or fixed structures have to carry high loads – often in safety critical situations. In order to sustain extreme characteristics of these high strength low alloy steels, it is a must to reduce the manufacturing defects. In the investigations presented in this paper, the influence of arc length on the weld metal hydrogen concentration was studied according to the ISO DIS 3690 in S960QL type steel with submerged arc welding. Measurement of the diffusible hydrogen was carried out by means of carrier gas hot extraction method. The weld seams with different arc length have similar chemical compositions. Maximum hardness values in the range of 410–425 HV1 were measured in the HAZ on both vertical and horizontal rows in welded structure with two mm wire diameter due to recrystallization condition. For four mm wire diameter, the hardness decreasing which is depending on the grain coarsening in the welded samples with two mm was not occurred in the weld seam-HAZ interface. The larger weld pool and the long arc length increased possibility of hydrogen pick-up and absorbing. Because of this reason, the diffusible hydrogen contents in the welded structure increased in accordance with the arc length.

Kurzfassung

Die wasserstoffunterstützte Schädigung ist ein gefährliches Phänomen, das die Schweißnahtqualität bezüglich der Lebensdauer einer Konstruktion sogar ohne visuelle Erkennbarkeit beeinflusst. Die Bestimmung des diffusionsfähigen Wasserstoffs im Schweißgut wurde auf internationalem Niveau in ISO 3690:2012 genormt. Diese internationale Norm spezifiziert die Probenentnahme und die analytische Prozedur, um den diffusionsfähigen Wasserstoff in martensitischem, bainitischem und ferritischem Schweißgut zu bestimmen, der sich beim Lichtbogenschweißen solcher Stähle mit Zusatzwerkstoff einstellt. Der für diesen Beitrag untersuchte Stahl S960QL wird ausgiebig in der Schwerlasttransportindustrie für die Herstellung von Hebezeug und im Bergbau verwendet, wo mobile und feste Strukturen große Lasten aufnehmen müssen, vor allem auch in sicherheitskritischen Anwendungen. Um die extremen Charakteristika dieser hochfesten niedriglegierten Stähle zu erhalten, müssen Herstellungsfehler reduziert werden. In der Studie, die in diesem Beitrag dargestellt wird, wurde der Einfluss der Lichtbogenlänge auf die Wasserstoffkonzentration im Schweißgut eines unterpulvergeschweißten Stahls des Typs S960QL entsprechend der ISO DIS 3690 untersucht. Die Messungen des diffusionsfähigen Wasserstoffs wurden mittels der Trägergas-Heißextraktion durchgeführt. Die Schweißraupen, die mit verschiedenen Lichtbogenlängen hergestellt wurden, haben eine ähnliche chemische Zusammensetzung. Die maximale Härte betrug in beiden, den vertikalen und den horizontalen, Reihen der mit einem Drahtdurchmesser von zwei Millimetern geschweißten Struktur aufgrund der Rekristallisationsbedingungen zwischen 410 und 425 HV1. Für den Drahtdurchmesser von vier Millimetern nahm die Härte ab, weil die in den mit einem Draht von zwei Millimetern Durchmesser geschweißten Schweißproben beobachtete Grobkornbildung an der Schmelzlinie nicht auftrat. Das größere Schweißbad und die längere Lichtbogenlänge konnte die Möglichkeit für eine Wasserstoffaufnahme und Wasserstoffabsorption erhöhen. Aus diesem Grund nahm der diffusionsfähige Wasserstoffgehalt in der geschweißten Struktur mit der Lichtbogenlänge zu.


*Correspondence Address, Assist. Prof. Dr. Mehmet Türker, Department of Machine Theory, Manufacture and Mechanics, Turkish Naval Academy, Rauf Orbay Caddesi, No:290, 34960, Tuzla-İstanbul, Turkey. E-mail:

Assistant Prof. Dr. Mehmet Türker, born in 1974, has studied Welding Technologies, Manufacturing, Materials Science and Casting Technologies in the Turkish Naval Academy since 2003. He has professional experience as plant manager in ship building (foundry, manufacturing). He is Assistant Professor at the Turkish Naval Academy in Istanbul, Turkey.


References

1 S.Nemat-Nasser, W.Guo: Thermomechanical response of HSLA-65 steel plates: Experiments and modeling, Mechanics of Materials37 (2005) pp. 37940510.1016/j.mechmat.2003.08.017Search in Google Scholar

2 L.Zhang, T.Kannengiesser: Austenite grain growth and microstructure control in simulated heat affected zones of microalloyed HSLA steel, Materials Science and Engineering A613 (2014), pp. 32633510.1016/j.msea.2014.06.106Search in Google Scholar

3 E. V.Morales, R. A.Silva, I. S.Bott, S.Paciornik: Strengthening mechanisms in a pipeline microalloyed steel with a complex microstructure, Materials Science and Engineering A585 (2013), pp. 25326010.1016/j.msea.2013.07.060Search in Google Scholar

4 J. R.Davis: Alloying – Understanding the Basics, ASM International, Materials Park, Ohio, USA (2001)10.31399/asm.tb.aub.9781627082976Search in Google Scholar

5 A.Ghosh, S.Sahoo, M.Ghosh, R. N.Ghosh, D.Chakrabarti: Effect of microstructural parameters, microtexture and matrix strain on the Charpy impact properties of low carbon HSLA steel containing MnS inclusions, Materials Science and Engineering A613 (2014), pp. 374710.1016/j.msea.2014.06.091Search in Google Scholar

6 S. D.Bhole, J. B.Nemade, L.Collins, C.Liu: Effect of nickel and molybdenum additions on weld metal toughness in a submerged arc welded HSLA line-pipe steel, Journal of Materials Processing Technology173 (2006), pp. 9210010.1016/j.jmatprotec.2005.10.028Search in Google Scholar

7 J. K.Patel, B.Wilshire: The challenge to produce consistent mechanical properties in Nb-HSLA strip steels, Journal of Materials Processing Technology120 (2002), pp. 31632110.1016/S0924-0136(01)01130-XSearch in Google Scholar

8 C.Zhang, X.Hu, P.Lu, G.Zhang: Tensile overload-induced plastic deformation and fatigue behavior in weld-repaired high-strength low-alloy steel, Journal of Materials Processing Technology213 (2013), pp. 2005201410.1016/j.jmatprotec.2013.05.018Search in Google Scholar

9 F.Huang, S.Liu, J.Liu, K. G.Zhang, T. H.Xi: Sulfide stress cracking resistance of the welded WDL690D HSLA steel in H2 S environment, Materials Science and Engineering A591 (2014), pp. 15916610.1016/j.msea.2013.10.081Search in Google Scholar

10 S.Beretta, A.Bernasconi, M.Carboni: Fatigue assessment of root failures in HSLA steel welded joints: A comparison among local approaches, International Journal of Fatigue31 (2009), pp. 10211010.1016/j.ijfatigue.2008.05.027Search in Google Scholar

11 A. A.Gorni, P. R.Mei: Austenite transformation and age hardening of HSLA-80 and ULCB steels, Journal of Materials Processing Technology155–156 (2004), pp. 1513151810.1016/j.jmatprotec.2004.04.245Search in Google Scholar

12 J.Cwiek: Hydrogen assisted cracking of high-strength weldable steels in sea-water, Journal of Materials Processing Technology164–165 (2005), pp. 1007101310.1016/j.jmatprotec.2005.02.083Search in Google Scholar

13 S.Shen, I. N. A.Oguocha, S.Yannacopoulos: Effect of heat input on weld bead geometry of submerged arc welded ASTM A709 grade 50 steel joints, Journal of Materials Processing Technology212 (2012), pp. 28629410.1016/j.jmatprotec.2011.09.013Search in Google Scholar

14 D. V.Kiran, B.Basu, A.De: Influence of process variables on weld bead quality in two wire tandem submerged arc welding of HSLA steel, Journal of Materials Processing Technology212 (2012), pp. 2041205010.1016/j.jmatprotec.2012.05.008Search in Google Scholar

15 R. S.Chandel, H. P.Seow, F. L.Cheong: Effect of increasing deposition rate on the bead geometry of submerged arc welds, Journal of Materials Processing Technology72 (1997), pp. 12412810.1016/S0924-0136(97)00139-8Search in Google Scholar

16 B. K.Show, R.Veerababu, R.Balamuralikrishnan, G.Malakondaiah: Effect of vanadium and titanium modification on the microstructure and mechanical properties of a microalloyed HSLA steel, Materials Science and Engineering A527 (2010), pp. 1595160410.1016/j.msea.2009.10.049Search in Google Scholar

17 L.Wei, T. W.Nelson: Influence of heat input on post weld microstructure and mechanical properties of friction stir welded HSLA-65 steel, Materials Science and Engineering A556 (2012), pp. 515910.1016/j.msea.2012.06.057Search in Google Scholar

18 M.Opiela: Hydrogen embrittlement of welded joints for the heat-treatable XABO 960 steel heavy plates, Journal of Achievements in Materials and Manufacturing Engineering38 (2010), No. 1, pp. 4148Search in Google Scholar

19 L.Aucott, S. W.Wen, H.Dong: The role of Ti carbonitride precipitates on fusion zone strength-toughness in submerged arc welded line-pipe joints, Materials Science and Engineering A622 (2015), pp. 19420310.1016/j.msea.2014.10.057Search in Google Scholar

20 A. J.Craven, K.He, L. A. J.Garvie, T. N.Baker: Complex heterogeneous precipitation in titanium-niobium microalloyed Al-killed HSLA steels I, (Ti,Nb)(C,N) particles, Acta Materialia48 (2000), pp. 3857386810.1016/S1359-6454(00)00193-2Search in Google Scholar

21 G.Krauss: Steels: Processing, Structure, and Performance, ASM International, Materials Park, Ohio, USA (2005)Search in Google Scholar

22 A.Fatehi, J.Calvo, A. M.Elwazri, S.Yue: Strengthening of HSLA steels by cool deformation, Materials Science and Engineering A527 (2010) pp. 4233424010.1016/j.msea.2010.03.036Search in Google Scholar

23 H. JoJun, K. B.Kang, C. G.Park: Effects of cooling rate and isothermal holding on the precipitation behavior during continuous casting of Nb-Ti bearing HSLA steels, Scripta Materialia49 (2003), pp. 1081108610.1016/j.scriptamat.2003.08.013Search in Google Scholar

24 D.Park, M.Huh, J.Shim, J.Suh, K.Lee, W.Jung: Strengthening mechanism of hot rolled Ti and Nb microalloyed HSLA steels containing Mo and W with various coiling temperature, Materials Science and Engineering A560 (2013), pp. 52853410.1016/j.msea.2012.09.098Search in Google Scholar

25 C.Zhang, J.Yang, X.Hu, P.Lu, M.Zhao: Microstructure characteristics and fatigue properties of welded HSLA with and without buffer layer, Materials Science and Engineering A546 (2012), pp. 16917910.1016/j.msea.2012.03.048Search in Google Scholar

26 M.Shome: Effect of heat-input on austenite grain size in the heat-affected zone of HSLA-100 steel, Materials Science and Engineering A445–446 (2007), pp. 45446010.1016/j.msea.2006.09.085Search in Google Scholar

27 N.Bailey, F. R.Coe, T. G.Gooch, P. H. M.Hart, N.Jenkins, R. J.Pargeter: Welding Steels Without Hydrogen Cracking, Abington Hall Publishing, Cambridge, UK (2004)Search in Google Scholar

28 C.Ayas, N. A.Fleck, V. S.Deshpande: Hydrogen embrittlement of a biomaterial, Mechanics of Materials80 (2015), pp. 19320210.1016/J.mechmat.2014.06.002Search in Google Scholar

29 Y. F.Cheng: Stress Corrosion Cracking of Pipelines, Wiley, New York, USA (2013)10.1002/9781118537022Search in Google Scholar

30 T.Kannengiesser, N.Tiersch: Comparative study between hot extraction methods and mercury method – A national round robin test, Welding in the World54 (2010), pp. R108R11410.1007/BF03263496Search in Google Scholar

31 Y.Sun, H.Fujii, H.Imai, K.Kondoh: Suppression of hydrogen-induced damage in friction stir welded low carbon steel joints, Corrosion Science94 (2015), pp. 889810.1016/J.corsci.2015.01.046Search in Google Scholar

32 ISO 3690: 2012: Welding and Allied Processes – Determination of Hydrogen Content in Arc Weld Mtal, Beuth, Berlin, Germany (2012)Search in Google Scholar

Published Online: 2016-05-23
Published in Print: 2016-06-01

© 2016, Carl Hanser Verlag, München

Downloaded on 7.12.2023 from https://www.degruyter.com/document/doi/10.3139/120.110891/html
Scroll to top button