Abstract
The present study is aimed at finding an optimization strategy for the CNC pocket milling process based on regression analysis including differential evolution algorithm (DEA). Milling parameters such as cutting speed, feed rate and depth of cut have been designed using rotatable central composite design (CCD). The AISI 1050 medium carbon steel has been machined by a high speed steel (HSS) flat end cutter tool with 8 mm diameter using the zig-zag cutting path strategy under air flow condition. The influence of milling parameters has been examined. The model for the surface roughness, as a function of milling parameters, has been obtained using the response surface methodology (RSM). Also, the power and adequacy of the quadratic mathematical model have been proved by analysis of variance (ANOVA) method. Finally, the process design parameters have been optimized based on surface roughness using bio-inspired optimization algorithm, called differential evolution algorithm (DEA). The enhanced method proposed in this study can be readily applied to different metal cutting processes with greater and faster reliability.
Kurzfassung
Die dem vorliegenden Beitrag zugrunde liegende Studie zielt darauf hin, eine Optimierungsstrategie für den Taschen-CNC-Fräsprozess basierend auf einer Regressionsanalyse einschließlich eines Differentialevolutionsalgorithmus (DEA) zu entwickeln. Hierzu wurden die Fräsparameter, wie beispielswweise die Schnittgeschwindigkeit, die Vorschubrate und die Schnitttiefe mittels des rotierbaren Zentralkompositdesigns (Central Composite Design (CCD)) entworfen. Der Stahl AISI 1050 mit einem mittleren Kohlenstoffgehalt wurde mittels eines Flachendschneidwerkzeuges mit einem Durchmesser von 8 mm aus einem Hochgeschwindigkeitsschnellarbeitsstahl (HSS) in einer Zick-Zack-Schneidpfadstrategie unter Luftzufuhr bearbeitet. Es wurde der Einfluss der Fräsparameter untersucht. Das Modell für die Oberflächenrauheit wurde als Funktion der Fräsparameter mittels des Oberflächenantwortverfahrens ermittelt. Außerdem wurde die Leistungsfähigkeit und die Genauigkeit des quadratischen mathematischen Modells mittels Varianzanalyse (ANOVA) geprüft. Schließlich wurden die Prozessparameter basierend auf der Oberflächenrauheit optimiert, indem ein bio-inspirierter Optimierungsalgorithmus angewendet wurde, der Differentialevolutionsalgorithmus (DEA) genannt wird. Das fortschrittliche Verfahren, wie es in dem vorliegenden Beitrag propagiert wird, kann sofort auf verschiedene Metallschneidprozesse mit größerer und schnellerer Zuverlässigkeit angewendet werden.
References
1 B. C.Routara, A. K.Sahoo, A. K.Parida, P. C.Padhi: Response surface methodology and genetic algorithm used to optimize the cutting condition for surface roughness parameters in CNC turning, Procedia Engineering38 (2012), pp. 1893–190410.1016/j.proeng.2012.06.232Search in Google Scholar
2 B.Buldum, A.Şık, U.Eşme, M. K.Külekci, Y.Kazançoğlu: Use of Grey-Taguchi method for the optimization of oblique turning process of AZ91D magnesium alloy, Materials Testing54 (2012), No. 11–12, pp. 779–78510.3139/120.110392Search in Google Scholar
3 J. P.Fabricio, P. P.Anderson, P. B.Pedro, F. J.Roberto, B. S.Messias: Optimization of radial basis function neural network employed for prediction of surface roughness in hard turning process using Taguchi's orthogonal arrays, Expert Systems with Applications39 (2012), No. 9, pp. 7776–778710.1016/j.eswa.2012.01.058Search in Google Scholar
4 P. G.Benardos, G. C.Vosniakos: Prediction of surface roughness in CNC machining: A review, International Journal of Machine Tools and Manufacture43 (2003), No. 8, pp. 833–84410.1016/S0890-6955(03)00059-2Search in Google Scholar
5 T.Özel, Y.Karpat: Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks, International Journal of Machine Tools and Manufacture45 (2005), No. 4–5, pp. 467–47910.1016/j.ijmachtools.2004.09.007Search in Google Scholar
6 B.Ozcelik, M.Bayramoglu: The statistical modeling of surface roughness in high-speed flat end milling, International Journal of Machine Tools and Manufacture46 (2006), No. 12–13, pp. 1395–140210.1016/j.ijmachtools.2005.10.005Search in Google Scholar
7 D. K.Baek, Tae JoKo, Hee SoolKim: Optimization of feedrate in a face milling operation using a surface roughness model, International Journal of Machine Tools and Manufacture41 (2001), No. 3, pp. 451–46210.1016/S0890-6955(00)00039-0Search in Google Scholar
8 H.Paris, G.Peigne, R.Mayer: Surface shape prediction in high speed milling, International Journal of Machine Tool and Manufacture44 (2004), No. 15, pp. 1567–157610.1016/j.ijmachtools.2004.06.005Search in Google Scholar
9 P.Franco, M.Estrems, F.Fuara: Influence of radial and axial runouts on surface roughness in face milling with round insert cutting tools, International Journal of Machine Tools and Manufacture44 (2004), No. 15, pp. 1555–156510.1016/j.ijmachtools.2004.06.007Search in Google Scholar
10 H. A.Kishawy, M.Dumitrescu, E. G.Ng, M. A.Elbestawi: Effect of coolant strategy on tool performance, chip morphology and surface quality during high-speed machining of A356 aluminum alloy, International Journal of Machine Tools and Manufacture45 (2005), No. 2, pp. 219–22710.1016/j.ijmachtools.2004.07.003Search in Google Scholar
11 A. Mariade SouzaJr., W. F.Sales, S. C.Santos, A. R.Machado: Performance of single Si3N4 and mixed Si3N4 + CPCBN wiper cutting tools applied to high speed face milling of cast iron, International Journal of Machine Tools and Manufacture45 (2005), No. 3, pp. 335–34410.1016/j.ijmachtools.2004.08.006Search in Google Scholar
12 S. H.Ryu, D. K.Choi, C. N.Chu: Roughness and texture generation on end milled surfaces, International Journal of Machine Tools and Manufacture46 (2006), No. 3–4, pp. 404–41210.1016/j.ijmachtools.2005.05.010Search in Google Scholar
13 A. L.Mantle, D. K.Aspinwall: Surface integrity of a high speed milled gamma titanium aluminide, Journal of Materials Processing Technology118 (2001), No. 1–3, pp. 143–15010.1016/S0924-0136(01)00914-1Search in Google Scholar
14 M. Y.Wang, H. Y.Chang: Experimental study of surface roughness in slot end milling Al2014-T6, International Journal of Machine Tools and Manufacture44 (2004), No. 1, pp. 51–5710.1016/j.ijmachtools.2003.08.011Search in Google Scholar
15 S. J.Lou, J. C.Chen: In-process surface roughness recognition (ISRR) system in end-milling operations, International Journal Advanced Manufacturing Technology15 (1999), pp. 200–20910.1007/s001700050057Search in Google Scholar
16 C.Gologlu, N.Sakarya: The effects of cutter path strategies on surface roughness of pocket milling of 1.2738 steel based on Taguchi method, Journal of Materials Processing Technology206 (2008), No. 1–3, pp. 7–1510.1016/j.jmatprotec.2007.11.300Search in Google Scholar
17 P. G.Benardos, G. C.Vosniakos: Prediction of surface roughness in CNC face milling using neural networks and Taguchi's design of experiments, Robotics and Computer Integrated Manufacturing18 (2002), No. 5–6, pp. 343–35410.1016/S0736-5845(02)00005-4Search in Google Scholar
18 K. AkmalShamsuddin, A. R.Ab-Kadir, M. H.Osman: A comparison of milling cutting path strategies for thin-walled aluminium alloys fabrication, The International Journal of Engineering and Science2 (2013), No. 3, pp. 1–8Search in Google Scholar
19 Y. M.Ertakin, Y.Kwon, T. L.Tseng: Identification of common sensory features for the control of CNC milling operations under varying cutting conditions, International Journal of Machine Tools and Manufacture43 (2003), No. 9, pp. 897–90410.1016/S0890-6955(03)00087-7Search in Google Scholar
20 D.Zou, J.Wu, L.Gao, S.Li: A modified differential evolution algorithm for unconstrained optimization problems, Neurocomputing120 (2013), pp. 469–48110.1016/j.neucom.2013.04.036Search in Google Scholar
21 D.Karaboga, S.Ökdem: A simple and global optimization algorithm for engineering problems: Differential evolution algorithm, Turkish Journal of Electrical Engineering12 (2004), No. 1, pp. 53–60Search in Google Scholar
22 J. P.Roselyn, D.Devaraj, S. S.Dash: Multi- objective differential evolution approach for voltage stability constrained reactive power planning problem, Electrical Power and Energy Systems59 (2014), pp. 155–16510.1016/j.ijepes.2014.02.013Search in Google Scholar
23 D.Datta, S.Kumar: Modeling and optimization of recovery process of glycolic acid using reactive extraction, International Journal of Chemical Engineering and Applications3 (2012), pp. 141–14610.7763/IJCEA.2012.V3.175Search in Google Scholar
24 I.Asiltürk, S.Neseli: Multi-response optimisation of CNC turning parameters via Taguchi method-based response surface analysis, Measurement45 (2012), No. 2, pp. 785–79410.1016/j.measurement.2011.12.004Search in Google Scholar
25 M. E.Aloufi, T. J.Kazmierski: A response surface modelling approach to performance optimisation of kinetic energy harvesters, International Journal of Research and Reviews in Computer Science (2011), No. 1, pp. 1–8Search in Google Scholar
26 Z.Li, X.Liang: Vibro-acoustic analysis and optimization of damping structure with response surface method, Materials and Design28 (2007), No. 7, pp. 1999–200710.1016/j.matdes.2006.07.006Search in Google Scholar
27 M. C.Kathleen, Y. K.Natalia, R.Jeff: Response surface methodology, Center for Computational Analysis of Social and Organizational Systems (CASOS), Technical Report, Pittsburgh, USA, (2004)Search in Google Scholar
28 R. H.Myers, C. M.Douglas, C. M.Anderson-Cook: Process and Product Optimization Using Designed Experiments, 3rd Ed., John Wiley and Sons, Hoboken, New Jersey, USA (2009)Search in Google Scholar
29 M.Demirel, B.Kayan: Application of response surface methodology and central composite design for the optimization of textile dye degradation by wet air oxidation, International Journal of Industrial Chemistry3 (2012), No. 24, pp. 1–1010.1186/2228-5547-3-24Search in Google Scholar
30 S. S.Moghaddam, M. R. AlaviMoghaddam, M.Arami: Coagulation/flocculation process for dye removal using sludge from water treatment plant: Optimization through response surface methodology, Journal of Hazardous Materials175 (2010), No. 1–3, pp. 651–65710.1016/j.jhazmat.2009.10.058Search in Google Scholar PubMed
31 B.Kayan, B.Gözmen: Degradation of acid red 274 using H2O2 in subcritical water: Application of response surface methodology, Journal of Hazardous Materials20–202 (2012), pp. 100–10610.1016/j.jhazmat.2011.11.045Search in Google Scholar PubMed
32 R. H.Myers: Response Surface Methodology, Allyn and Bacon, Boston, USA (1971)Search in Google Scholar
33 C. L.Lim, N.Morad, T. T.Teng, I.Norli: Chemical oxygen demand (COD) reduction of a reactive dye wastewater using H2O2/pyridine/Cu(II) system, Desalination278 (2011), No. 1–3, pp. 26–3010.1016/j.desal.2011.04.069Search in Google Scholar
34 A.Sagbas: Analysis and optimization of surface roughness in the ball burnishing process using response surface methodology and desirability function, Advances in Engineering Software42 (2011), No. 11, pp. 992–99810.1016/j.advengsoft.2011.05.021Search in Google Scholar
35 http://www.itl.nist.gov/div898/handbook/pri/section5/pri5322.htmSearch in Google Scholar
36 A.Aggarwal, H.Singh, P.Kumar, M.Singh: Optimization of multiple quality characteristics for CNC turning under cryogenic cutting environment using desirability function, Journal of Materials Processing Technology205 (2008), No. 1–3, pp. 42–5010.1016/j.jmatprotec.2007.11.105Search in Google Scholar
37 R. H.Myers, D. C.Montgomery: Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 2nd Ed., John Wiley & Sons, New York, USA (2002)Search in Google Scholar
38 K.Price: New Ideas in Optimization, McGraw-Hill, New York, USA (1999)Search in Google Scholar
39 R.Storn, K. V.Price: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces, Journal of Global Optimization11 (1997), No. 4, pp. 341–35910.1023/A:1008202821328Search in Google Scholar
40 http://www.icsi.berkeley.edu/_storn/code.htmlSearch in Google Scholar
41 T.Rogalsky, R. W.Derksen, S.Kocabiyik: Differential evolution in aerodynamic optimization, Proceedings of 46th Annual Conference of Canada Aeronaut Space Inst., Montreal, Canada (1999), pp. 29–36Search in Google Scholar
42 R.Joshi, A. C.Sanderson: Minimal representation multisensor fusion using differential evolution, IEEE Transactions on Systems, Man and Cybernetics Part A Systems and Humans29 (1999), pp. 63–7610.1109/3468.736361Search in Google Scholar
43 P.Thomas, D.Vernon: Image registration by differential evolution, Proc. of the Irish Machine Vision and Image Processing Conference (1997), pp. 221–225Search in Google Scholar
44 R.Storn: Differential evolution design of an IIR filter with requirements of magnitude and group delay, Proceedings of the IEEE Conference on Evolutionary Computation (1996), pp. 268–27310.1109/ICEC.1996.542373Search in Google Scholar
45 R.Storn: System design by constraint adaptation and differential evolution, IEEE Transactions on Evolutionary Computation3 (1999), No. 1, pp. 22–3410.1109/4235.752918Search in Google Scholar
46 J.Liu, J.Lampinen: A fuzzy adaptive differential evolution algorithm, Proc. of Tencon’02, IEEE Region 10 Conference on Computers, Communications, Control And Power Engineering1 (2002), Lappeenranta University of Technology, Finland, pp. 606–61110.1109/TENCON.2002.1181348Search in Google Scholar
47 A. K.Qin, V. L.Huang, P. N.Suganthan: Differential evolution algorithm with strategy adaptation for global numerical optimization, IEEE Transaction on Evolutionary Computation13 (2008), No. 2, pp. 398–41710.1109/TEVC.2008.927706Search in Google Scholar
© 2016, Carl Hanser Verlag, München