Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 22, 2016

Tensile properties of friction welded AISI 4340 joints

Zugfestigkeit von rührreibgeschweißten AISI 4340 Verbindungen
  • Balakrishnan Marimuthu and Balasubramanian Visvalingam
From the journal Materials Testing

Abstract

Armor grade Q&T steels very similar to AISI 4340 are used for construction of combat vehicles due to its high hardness, high strength to weight ratio and excellent toughness. The influence of friction welding parameters on microstructure and mechanical properties of such armor steel friction weld joints were evaluated. The microstructural properties of the various weld joint regions were examined by optical microscopy. It was also observed that the fully deformation zone (FDZ), the partially deformation zone (PDZ) and the heat affected zone (HAZ) have a vital effect on the tensile strength of the welded joints. Nearly 83 % of the tensile strength of the parent material (PM) can be achieved in friction welded joints. This is a 17 % higher strength than with the same parent material welded by shielded metal arc welding (SMAW) and flux cored arc welding (FCAW). The respective tensile and impact properties of the welded joints were correlated with the weld metal microstructures and fracture morphologies.

Kurzfassung

Ein angelassener Panzerstahl ähnlich zum Werkstoff AISI 4340 wird für die Konstruktion von Kampffahrzeugen verwendet, weil er eine hohe Härte, ein hohes Festigkeits-Gewichtsverhältnis und eine exzellente Zähigkeit besitzt. Es wurde der Einfluss der Parameter des Rührreibschweißens auf die Mikrostruktur und die mechanischen Eigenschaften der Panzerstahlverbindungen bestimmt. Die mikrostrukturellen Eigenschaften der verschiedenen Schweißnahtzonen wurden mittels Lichtmikroskopie untersucht. Es wurde beobachtet, dass die Voll- und die Teilverformungszone (Fully Deformation Zone (FDZ), Partially Deformation Zone (PDZ)) sowie die Wärmeeinflusszone (Heat Affected Zone (HAZ)) einen starken Einfluss auf die Festigkeit der Schweißverbindungen ausüben. Etwa 83 % der Festigkeit des Grundwerkstoffs (Parent Material (PM)) kann in den Rührreibschweißverbindungen erreicht werden. Dies ist etwa eine 17 % höhere Festigkeit bei dem gleichen Grundwerkstoff, als sie mittels Schutzgasschweißens (Shielded Metal Arc Welding (SMAW)) und Fülldrahtschweißens (Flux Cored Arc Welding (FCAW)) erreicht werden kann. Die entsprechenden Zug- und Impaktfestigkeiten wurden mit den Schweißnahtgefügen und der Bruchmorphologie korreliert.


*Correspondence Address, Associate Prof. Dr. Balakrishnan Marimuthu, Department of Mechanical Engineering, M. Kumarasamy College of Engineering, Thalavapalayam, Karur, 639 113, Tamil Nadu, India, E-mail: ,

Associate Prof. Dr. Balakrishnan Marimuthu, born 1976, is working at M. Kumarasamy College of Engineering, Thalavapalayam, Karur, Tamil Nadu, India. From 1991 to 1994, he achieved his Diploma in Mechanical Engineering at the Al-Ameen Institute of Technology, Erode, India, and from 2000 to 2004, he worked on his BEng degree in Mechanical Engineering at the Coimbatore Institute of Technology, Coimbatore, India. He also achieved a MEng degree at the Government College of Engineering, Salem, India from 2004 to 2006. In 2014, he achieved his PhD in Mmanufacturing Engineering at the Annamalai University Annamalai, Nagar, India.

Prof. Dr. Balasubramanian Visvalingam, born 1948, works in the Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar, Tamil Nadu, India. He achieved his BEng degree in 1989 at the University of Madras, Chennai, India. In 1992, he also achieved his MEng degree at the Guindy Engineering College, Anna University, Chennai, India and his PhD at the Annamalai Indian Institute of Technology Madras, Chennai, India in 2000.


References

1 M.Balakrishnan, V.Balasubramanian, G. MadhusudhanReddy, K.Sivakumar: Effect of buttering and hardfacing on ballistic performance of shielded metal arc welded armour steel joints, Materials and Design32 (2011), No. 2, pp. 46947910.1016/j.matdes.2010.08.037Search in Google Scholar

2 G. MadhusudhanReddy, T.Mohandas, G. R. N.Tagore: Weldability studies of high-strength low-alloy steel using austenitic fillers, Journal of Materials Processing and Technology49 (1995), No. 1, pp. 21322810.1016/0924-0136(94)01317-TSearch in Google Scholar

3 G. MadhusudhanReddy, T.Mohandas, K. K.Papukutty: Effect of welding process on the ballistic performance of high-strength low-alloy steel weldments, Journal of Material Processing and Technology74 (1998), No. 1–3, pp. 273510.1016/S0924-0136(97)00245-8Search in Google Scholar

4 G. MadhusudhanReddy, T.Mohandas: Ballistic performance of high-strength low- alloy steel weldments, Journal of Materials Processing and Technology57 (1996), No. 1–2, pp. 233010.1016/0924-0136(95)02041-1Search in Google Scholar

5 G. MadhusudhanReddy, T.Mohandas, D. S.Sarma: Cold cracking studies on low alloy steel weldments: effect of filler metal composition, Science and Technology of Welding and Joining8 (2003), No. 6, pp. 40741410.1179/136217103225005552Search in Google Scholar

6 T.Mohandas, G. MadhusudhanReddy, B. SatishKumar: Heat-affected zone softening in high-strength low-alloy steels, Journal of Materials Processing and Technology88 (1999), No. 1, pp. 28429410.1016/S0924-0136(98)00404-XSearch in Google Scholar

7 M.Balakrishnan, V.Balasubramanian, G. MadhusudhanReddy: Effect of hardfacing consumables on ballistic performance of Q&T steel joints, Journal of Defense Technology9 (2013), No. 4, pp. 24925810.1016/j.dt.2013.12.007Search in Google Scholar

8 M.Balakrishnan, V.Balasubramanian, G. MadhusudhanReddy: Effect of hardfacing process on ballistic performance of Q&T steel joints, ASTM Journal of Materials Performance and Characterization3 (2014), No. 1, pp. 26528410.1520/MPC20130021Search in Google Scholar

9 M.Balakrishnan, V.Balasubramanian, G. MadhusudhanReddy: Effect of hardfaced interlayer thickness and low hydrogen ferritic capping on ballistic performance of shielded metal arc welded armour steel joints, Journal of Iron and Steel Research International20 (2013), No. 12, pp. 829110.1016/S1006-706X(13)60220-4Search in Google Scholar

10 G. MadhusudhanReddy, T.Mohandas: Influence of welding process and residual stresson ballistic performance, Journal of Materials Science Letters15 (1996), pp. 1633163510.1007/BF00278111Search in Google Scholar

11 G.Magudeeswaran, V.Balasubramanian, T. S.Balasubramanian, G. MadhusudhanReddy: Effect of welding consumables on tensile and impact properties of shielded metal arc welded high strength quenched and tempered steel joint, Science and Technology of Welding and Joining13 (2008), No. 2, pp. 9710510.1179/174329307X249432Search in Google Scholar

12 G.Magudeeswaran, V.Balasubramanian, T. S.Balasubramanian, G. MadhusudhanReddy: Effect of welding process and consumables on tensile and impact properties of high strength, quenched and tempered steel joint, Journal of Iron and Steel Research International15 (2008), No. 6, pp. 879410.1016/S1006-706X(08)60273-3Search in Google Scholar

13 G.Magudeeswaran, V.Balasubramanian, S.Sathyanarayanan, G. MadhusudhanReddy, A.Moitra, S.Venugopal, G.Sasikala: Dynamic fracture toughness of armour grade quenched and tempered steel joints fabricated using low hydrogen ferritic fillers, Journal of Iron and Steel Research International17 (2010), No. 5, pp. 515610.1016/S1006-706X(10)60099-4Search in Google Scholar

14 G.Magudeeswaran, V.Balasubramanian, G. MadhusudhanReddy: Effect of welding consumables on fatigue performance of shielded metal arc welded high strength Q&T steel joints, Journal of Materials Engineering Performance18 (2009), No. 1, pp. 495610.1007/s11665-008-9253-1Search in Google Scholar

15 Z. AhmetSahin, S. BekirYibas¸M.Ahmed, J.Nickel: Analysis of the friction welding process in relation to the welding of copper and steel bars, Journal of Materials Processing and Technology82 (1998), pp. 12713610.1016/S0924-0136(98)00032-6Search in Google Scholar

16 M.Yılmaz, M.Çöl, M.Acet: Interface properties of aluminum/steel friction-welded components, Materials Characterization49 (2002), No. 5, pp. 42142910.1016/S1044-5803(03)00051-2Search in Google Scholar

17 K. G. K.Murti, S.Sundaresan: Parameter optimization in friction welding dissimilar materials, Metal Construction (1983), pp. 331335Search in Google Scholar

18 I.Kirik, N.Batman, E.Ozdemir, H.Firat, U.Caligulu: Optimization of tensile strength of friction welded AISI 1040 and AISI 304L steels according to statistics analysis (ANOVA), Materials Testing55 (2013), No. 6, pp. 43544110.3139/120.110455Search in Google Scholar

19 S.Celik, I.Ersozlu: Investigation of the mechanical properties and microstructure of friction welded joints between AISI 4140 and AISI 1050 steels, Materials and Design30 (2009), pp. 97097610.1016/j.matdes.2008.06.070Search in Google Scholar

20 R.Paventhan, P. R.Lakshminarayanan, V.Balasubramanian: Prediction and optimizationof friction welding parameters for joining aluminium alloy and stainless steel, Transactions of Non-Ferrous Metals Society of China21 (2011), No. 7, pp. 1480148510.1016/S1003-6326(11)60884-4Search in Google Scholar

21 N.Özdemir, F.Sarsılmaz, A.Hasçalik: Investigation of the mechanical properties of friction-welded joints between AISI 304L and AISI 4340 steel as a function rotational speed, Materials Letters59 (2005), pp. 2504250910.1016/j.matlet.2005.03.034Search in Google Scholar

22 N.Özdemir, F.Sarsılmaz, A.Hasçalik: Effect of rotational speed on the interface properties of friction-welded AISI 304L to 4340 steel, Materials and Design28 (2007), No. 1, pp. 30130710.1016/j.matdes.2005.06.011Search in Google Scholar

23 S. A. A. AkbariMousavi, A. RahbarKelishami: Experimental and numerical analysis of the friction welding process for the 4340 steel and mild steel combinations, Welding Journal87 (2008), pp. 178s186sSearch in Google Scholar

24 M.Sahin: Joining with friction welding of high-speed steel and medium-carbon steel, Journal of Materials Processing Technology168 (2005), No. 2, pp. 20221010.1016/j.jmatprotec.2004.11.015Search in Google Scholar

25 M.Sahin: Evaluation of the joint-interface properties of austenitic stainless steels (AISI 304) joined by friction welding, Materials and Design28 (2007), No. 7, pp. 2244225010.1016/j.matdes.2006.05.031Search in Google Scholar

26 S. D.Meshram, T.Mohandas, G. MadhusudhanReddy: Friction welding of dissimilar pure metals, Journal of Materials Processing Technology184 (2007), No. 1, pp. 33033710.1016/j.jmatprotec.2006.11.123Search in Google Scholar

27 A.Hasçalik, E.Ünal, N.Özdemir: Fatigue behaviour of AISI 304 steel to AISI 4340 steel welded by friction welding, Journal of Materials Science41 (2006), No. 11, pp. 3233323910.1007/s10853-005-5478-7Search in Google Scholar

28 M.Azizieh, M.Khamisi, D. J.Lee, E. Y.Yoon, H. S.Kim: Characterizations of dissimilar friction welding of ST37 and CK60 steels, International Journal of Advanced Manufacturing Technology85 (2016), pp. 27732781.10.1007/s00170-015-8107-xSearch in Google Scholar

29 P.Lehto, J.Romanoff, H.Remes, T.Sarikka: Characterisation of local grain size variation of welded structural steel, Welding in the World60 (2016), pp. 67368810.1007/s40194-016-0318-8Search in Google Scholar

Published Online: 2016-12-22
Published in Print: 2017-01-05

© 2017, Carl Hanser Verlag, München

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.3139/120.110958/html
Scroll to top button